ICESat (GLAS) Science Processing
Software Document Series

Volume #
GSAS Detailed Design Document
Version 3.0

Jeffrey Lee/Raytheon ITSS
Observational Science Branch
Laboratory for Hydrospheric Processes
NASA/GSFC Wallops Flight Facility
Wallops Island, Virginia 23337

October 2002

ICESat Contacts:

H. Jay Zwally, ICESat Project Scientist
NASA Goddard Space Flight Center
Greenbelt, Maryland 20771

Bob E. Schutz, GLAS Science Team Leader
University of Texas Center for Space Research
Austin, Texas 78759-5321

David W. Hancock lll, Science Software Development Leader
NASA/GSFC Wallops Flight Facility
Wallops Island, Virginia 23337

Foreword

This document describes the detailed design of GLAS Science Algorithm Software.

The GEOSCIENCE LASER ALTIMETER SYSTEM (GLAS) is a part of the EOS pro-
gram. This laser altimetry mission will be carried on the spacecraft designated EOS
ICESat (Ice, Cloud and Land Elevation Satellite). The GLAS laser is a frequency-dou-
bled, cavity-pumped, solid state Nd:YAG laser.

This document was prepared by the Observational Science Branch at NASA GSFC/
WEFF, Wallops Island, VA, in support of B. E. Schutz, GLAS Science Team Leader for
the GLAS Investigation. This work was performed under the direction of David W.
Hancock, 111, who may be contacted at (757) 824-1238, hancock@osb.wff.nasa.gov (e-
mail), or (757) 824-1036 (FAX).

The following GLAS Team members contributed to the creation of this document:
Raytheon/KTristine Barbieri

Raytheon/Suneel Bhardwaj

Raytheon/ Anita Brenner

972/David W. Hancock, 111

Raytheon/Peggy Jester

Raytheon/Steve McLaughlin

Raytheon/Carol Purdy

Raytheon/Lee Anne Roberts

October 2002 Page iii Version 3.0

GSAS Detailed Design Document Foreword

Version 3.0 Page iv October 2002

Table of Contents

FOrewWOrd ii
Table of Contents. vV
List Of FIQUIes. IX
Listof Tables Xi
Section 1 Introduction
1.1 Identification of Document. 1-1
1.2 Scope of Document 1-1
1.3 Purpose and Objectives of Document. 1-1
1.4 Document Statusand Schedule 1-1
1.5 Document Organization0 ... 1-1
1.6 Document Change History 1-2
Section 2 Related Documentation
2.1 Parent Documents. 2-1
2.2 Applicable Documents. 2-1
2.3 Information Documents 2-2
Section 3 Design Issues
3.1 Requirements. 3-1
3.2 Single vs. Multiple Executables 3-1
3.3 Software REUSE o 3-2
3.4 I/Oand UnitConversion. 3-2
3.5 Reprocessing and Pass-Thrus. 3-2
3.6 Data Buffering. 3-3
Section 4 Design Overview
4.1 GSAS Design OVerVIEW. e e 4-1
4.2 PGES .. 4-1
4.3 Files . .. 4-3
4.4 Science Algorithms 4-3
4.5 UtIlIties 4-3
Section 5 Foundation Libraries
5.1 The Platform Library (platform_lib) 5-1
5.2 The Control Library (cntrl_lib). 5-2
5.3 The Error Library (err_lib). 5-3
5.4 The Math Library (math lib) 5-4
5.5 The Ancillary Library (anc_lib) 5-4
5.6 The File Library (file_lib) 5-6
5.7 The Time Library (time_lib) 5-6
5.8 The Product Library (prod_lib). 5-7
5.9 The Exec Library (exec_lib) 5-8
October 2002 Page v Version 3.0

GSAS Detailed Design Document Table of Contents

Section 6 Common Functionality
6.1 Control FileParsing i, 6-1
6.2 ANCO7 Constants Files 6-5
6.3 Invalid Values and Error/Status Reporting 6-6
6.4 ANCO6 Metadata/LogFile 6-9
6.5 Product Internal Data Storage, Conversionand 1/O 6-9
6.6 Product Headers. 6-12
6.7 SUMMAIY . . . o e e e e 6-13
Section 7 GSAS Core PGEs
7.1 Function 7-1
7.2 Requirements 7-1
7.3 Approach 7-1
7.4 DESIgN . . 7-2
Section 8 GLAS_LOproc
8.1 OVEIVIBW . o o 8-1
8.2 Function 8-1
8.3 APProach 8-2
8.4 Inputand Output Files. 8-2
8.5 DESIgN . . 8-7
Section 9 GLAS L1A
9.1 OVEIVIBW . . o 9-1
9.2 Function 9-1
9.3 Design Approach. 9-1
9.4 Inputand Output Files. 9-2
9.5 GLAS L1APGE ... 9-2
9.6 L1IA Manager (LIA_MQF) . . 9-4
9.7 PGE/Manager Implementation Details. 9-6
9.8 L1IA Subsystem 9-8
Section 10 GLAS_Alt
10.1 FUunction e 10-1
10.2 Design Approach. 10-1
10.3 Inputand Output Files. 10-1
10.4 GLAS Alt ... 10-4
10.5 Waveform Manager (WF_Mgr) 10-5
10.6 Elevation Manager (Elev_Mgr) 10-8
10.7 PGE/Manager Implementation Details. 10-9
10.8 WEF_Subsystem 10-20
10.9 Elev_Subsystem 10-37
Section 11 GLAS Atm
11.1 OV W . . o 11-1
11.2 Function 11-1
11.3 Design Approach. 11-1

Version 3.0 Page vi October 2002

Table of Contents GSAS Detailed Design Document

11.4 Inputand Output Files. i 11-2
115 FUNCLIONSo e e 11-4
11.6 Atm_Subsystem. 11-9
Section 12 GLAS Reader
12.1 Function. 12-1
12.2 Design Approach 12-1
12.3 Inputand Output Files. 12-1
12.4 GLAS Reader 12-3
Section 13 met_util
13.1 OVEIVIBW . . . 13-1
13.2 Function. e 13-1
13.3 Design Approach e 13-1
13.4 Inputand Output Files. 13-1
13.5 FUNCLIONS e 13-1
13.6 Functional Overview. 13-2
Section 14 reforbit_util
14.1 OVEIVIBW . . . e 14-1
14.2 Function. 14-1
14.3 Design Approach 14-1
14.4 Inputand Output Files. 14-1
14.5 FUNCLIONSo 14-1
14.6 Functional Overview. i 14-2
Section 15 createGran_ util
15.1 OVeIVIBW . .o 15-1
15.2 Function. 15-1
15.3 Design Approach 15-1
15.4 Inputand Output Files. i 15-4
15.5 FUNCLIONS e 15-5
15.6 Functional Overview. 15-5
Section 16 atm_anc
16.1 OVeIVIBW . .o 16-1
16.2 Function. 16-1
16.3 Design Approach 16-1
16.4 Inputand Output Files. 16-1
16.5 FUuNctions 16-2
16.6 Functional Overview of Calibration Modules 16-2
Section 17 GLAS_Meta
17.1 Function. 17-1
17.2 Design Approach 17-1
17.3 Inputand Output Files. i 17-1
17.4 GLAS Meta 17-3

October 2002 Page vii Version 3.0

GSAS Detailed Design Document Table of Contents

Section 18 GLAS_APID

18.1 Function 18-1
18.2 Design Approach. 18-1
18.3 Inputand Output Files. 18-1
18.4 GLAS _APID . .. 18-2
Appendix A Processing Scenarios
Appendix B Makefiles and Libraries
B.1 Compilation. B-1
B.2 Using Libraries. B-2
B.3 Some Development Hints. B-2
B.4 Makefile Details B-3
B.5 Typesof Makefiles B-3
B.6 A Sample Heavily-Commented Makefile B-4
Abbreviations & ACTONYMIS.ttt e e AB-1
GlOSSarY. . . GL-1

Version 3.0 Page viii October 2002

Figure 1-1
Figure 4-1
Figure 4-2
Figure 6-1
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 8-1
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6
Figure 10-7
Figure 10-8
Figure 10-9
Figure 10-10
Figure 10-11
Figure 10-12
Figure 10-13
Figure 10-14
Figure 10-15
Figure 10-16
Figure 10-17

List of Figures

I-SIPS Software Top-Level Decomposition................... 1-2
GSAS LayerS oo 4-1
Simplified GSAS Data Flow Diagram 4-2
Error Ancillary FileFormat. 6-7
Top-Level Structure Chart. 7-3
Mainlnit 7-4
GetControl 7-5
ReadDatat 7-8
GLAS LOproc StructureChart, 8-8
GLAS L1AStructureChart. ..., 9-4
L1IA MgrStructureChart i 9-5
L1IA Manager Flow Chart 9-6
Level IA Computations.t 9-8
GLAS AltStructureChart................................ 10-5
WF_Mgr Structure Chart. o 10-6
WF Manager Flowchart i, 10-7
Elev._Mgr StructureChart 10-9
Elev._MgrFlowChart............ 10-10
WV A SS & . vttt 10-21
Assess Waveform Sub-Processest 10-24
W_FunctionalFt. 10-27
W_FunctionalFt Subprocesses. oo, 10-28
WFMgr StructureChart. o 10-36
W_Assess StructureChart. 10-36
W_FunctionalFt Structure Chart. 10-37
Level 1Band 2 ElevationDFD 10-38
Level 1B Elevation Computation DFD. 10-39
Tide CorrectionsRoutinesDFD 10-40
Calculate Level2 ElevationsDFD 10-41
Elevation Manager i 10-42

October 2002

Page ix Version 3.0

GSAS Detailed Design Document

Figure 10-18 Calculate Level 2 Elevations Structure Chart............... 10-45
Figure 10-19 Tide Correction Routines Structure Chart. 10-46
Figure 10-20 GetGeoid Structure Chart, 10-46
Figure 10-21 Calculate Trop Corrections Structure Chart................ 10-47
Figure 11-1 GLAS Atm StructureChart 11-5
Figure 11-2 Atm_Mgr StructureChart i i, 11-6
Figure 11-3 ATM Manager-Partl 11-7
Figure 11-4 ATM Manager-Part2 i, 11-8
Figure 11-5 Atmosphere Subsystem Processes 11-10
Figure 11-6 ATM L1B Calculate Calibration Coefficients, Profile Locations,

and DEM Subprocesses. 11-11
Figure 11-7 ATM L1B Backscatter Subprocesses. 11-12
Figure 11-8 ATM L1B QA Statistics and WriteATM Subprocesses 11-13
Figure 11-9 ATM L1B QA Statistics and WriteATM Subprocesses 11-14
Figure 11-10 ATM L2: Cloud / Aerosol Layer Heights Subprocesses. 11-15
Figure 11-11 Atmosphere Subsystem: Optical Properties Subprocesses. ... 11-16
Figure 11-12 ATM L2 QA Statistics and WriteATM Subprocesses 11-16
Figure 11-13 ATM Calibration Coefficient / Profile Location /

DEM Modules. 11-17
Figure 11-14 ATM Backscatter Modules. 11-17
Figure 11-15 ATM L1B QA Statistics / Write ATM Modules............. 11-18
Figure 11-16 ATM 20 sec BufferingModule 11-18
Figure 11-17 ATM Cloud 7/ Aerosol Layer Heights Modules............. 11-19
Figure 11-18 ATM Optical PropertiesModule 11-19
Figure 11-19 L2 QA Statistics / Write ATM Modules 11-20
Figure 13-1 Process Flow Diagram: Overall Process 13-3
Figure 13-2 Process Flow Diagram: Shell Script 13-4
Figure 14-1 Process Flow Diagram ..., 14-3
Figure 15-1 Process Flow Diagram 15-6
Figure 16-1 Process Flow Diagram i, 16-3
Version 3.0 Page x October 2002

List of Figures

List of Tables

Table 4-1 Subsystem, Librariesand Products 4-3
Table 5-1 Library Inter-dependencies. 5-1
Table 5-2 platform_lib Modules. 5-2
Table 5-3 centrl_libModules 5-2
Table 5-4 err_libModules. 5-3
Table 5-5 math_libModules. 5-4
Table 5-6 anc_libModules 5-4
Table 5-7 file_libModules. 5-6
Table 5-8 time_libModules 5-7
Table 5-9 prod_lib Modules 5-7
Table5-10 fexec libModules.......... i 5-8
Table 6-1 Required Single-Instance Keywords 6-2
Table 6-2 Optional Multiple-Instance Keywords 6-2
Table 6-3 PASSID Control Line Elements. 6-2
Table 6-4 passid Field Description. 6-3
Table 6-5 File Segmentand VersionFields. 6-4
Table 6-6 InvalidValues i 6-6
Table 6-7 PGEEXItStatus Codes 6-7
Table 6-9 Error Sections. i 6-8
Table 6-8 ErrorString Format. 6-8
Table 6-10 Error Severity COdes.ottt 6-9
Table 6-11 Product Module Functionality 6-10
Table 8-1 GLAS LOprocInputs ... 8-2
Table 8-3 Supported APIDS 8-3
Table 8-2 GLAS_LOProc OULPULS. . ..ot 8-3
Table 8-4 ANC33 Field Descriptions. 8-4
Table 8-6 ANC32 Format/Description, 8-6
Table 8-5 ANC29 Format/DesCription, 8-6
Table 9-1 GLAS LIAINPULS. ... e e 9-2
Table 9-2 GLAS LIAOQUIPULS . . .o e 9-3

October 2002 Page xi Version 3.0

GSAS Detailed Design Document List of Tables
Table 10-1 GLAS _AILINPULS.o 10-2
Table 10-2 GLAS AltOUtpuULtS e 10-3
Table 11-1 GLAS_AIMINPULS e 11-2
Table 11-2 GLAS _ AtMOULPULS. e 11-3
Table 12-1 GLAS Reader Inputs, 12-1
Table 13-1 met_utilInputs 13-2
Table 13-2 met util Qutputs. 13-2
Table 14-1 createGran_util Inputs.............. 14-1
Table 14-2 createGran_util Qutputs 14-2
Table 15-1 createGran_utilInputs........... i i, 15-4
Table 15-2 createGran_util Qutputs i, 15-4
Table 16-1 atm_ancInputs 16-1
Table 16-2 atm_anC OUtPULS.o 16-2
Table 17-1 GLAS Metalnputs., 17-1
Table 17-2 GLAS _Meta OUtpULSot 17-2
Table18-1 GLAS APIDINPULS 18-1
Table 18-2 GLAS APID OULPULS. . ..ot 18-2
Table A-1 Reprocessing SCENAriost A-1

Version 3.0

Page xii

October 2002

Section 1

Introduction

1.1 Identification of Document

This document is identified as the GLAS Science Algorithm Software (GSAS)
Detailed Design Document. The unique document identification number within the
GLAS Ground Data System numbering scheme is TBD. Successive editions of this
document will be uniquely identified by the cover and page date marks.

1.2 Scope of Document

The GLAS I-SIPS Data Processing System, show in Figure 1-1, provides data process-
ing and mission support for the Geoscience Laser Altimeter System (GLAS). I-SIPS is
composed of two major software components - the GLAS Science Algorithm Soft-

ware (GSAS) and the Scheduling and Data Management System (SDMS). GSAS pro-
cesses Level-0 satellite data and creates EOS Level 1A/B and 2 data products. SDMS
provides for scheduling of processing and the ingest, staging, archiving and catalog-
ing of associated data files. This document describes the detailed design of GSAS.

1.3 Purpose and Objectives of Document

This document describes the detailed design of the GLAS Science Algorithm Soft-
ware. It contains descriptions, flow charts, data flow diagrams, and structure charts
for each major component of the GSAS.

The purpose of this document is to present the detailed design of the GSAS. It is
intended as a reference source which would assist the maintenance programmer in
making changes which fix or enhance the documented software.

1.4 Document Status and Schedule

The GLAS Science Algorithm Software Detailed Design Document is currently
released as Version 3.0 (\V3.0).

1.5 Document Organization

This document's outline is assembled in a form similar to those presented in the
NASA Software Engineering Program [Information Document 2.3a].

October 2002 Page 1-1 Version 3.0

GSAS Detailed Design Document Introduction

ANCxx GLAO0O_xx GLAXxx Files Control Files QAPxx Files, BRWxx ANCO06
(Ancillary) (APIDs) (Products) (Products) (Browse) (Log/Meta)
SDMS: Science Data Management System: Ingest, Stage, Schedule, Archive, Limited Distribution
A

GSAS: GLAS Science Algorithm Software : Science Data Processing and Utilities

GLA0O_xx GLAS_L1A GLAO1 GLAS_AIt
(APIDs) L1A
,(QAPOlg L1B Waveform/ L1B and 2 Elevation

Range Dist

LIAALT /" Assessment, POD Interp,
Std Range Corr, Geoid, Trop, Tides,

L1AENG |4 QAPO3 POD/PAD, Inst Corr, Rough & Slope,

i

GLAS_LOproc

1
H)

Det Geoloc, Std Spot Loc & Elev,
'| | Ice Sheet Sea Ice Land Ocean
LIAATT (Calc WF Reflectivity, Surface
- ! Spot & Spot & Spot & Spot &
ANC29 N> e Characteristics Elevation & Elev Elev Tlov Flov
Characteristics
ANC32 LIAATM QAPO4 T T T T
~ il il il il

N

a

Cqaro2

v N~ i A, A, .
Coranz C Cancao C Coraos C Caraos C Corarz C Corats C Corata C CoLais(
Qaros C Capos C Ceari2(C Ceap3(C (CeariaC CarisC

GLAOO_GPS| MET_Util ANCO1 (

Ceran ?
ATM_Anc —DCW

Create_GLA16

GLAS_Atm
L1B and 2 Atmosphere

Boundary
Layers

/ \
BROWSE
GLAO7 GLAO8 GLA09 GLA10 GLA11

Caaror(C Coaros(C Caaros(C Coaro(C CanruiC

GLAS_GPS

Backscatter Cross Sections Optical Depth

Figure 1-1 I-SIPS Software Top-Level Decomposition

1.6 Document Change History

Document Name: GLAS Science Algorithm Software Detailed Design Document
Version Number Date Nature of Change
Version 0 August 1999 Original Version
Version 1 November 2000 Revised for V1 software.
Version 2 November 2001 Revised for V2 software.
Version 2.2 July 2002 Revised for V2.2 software.
Version 3.0 October 2002 Revised for V3.0 software.

Version 3.0 Page 1-2 October 2002

2.1

Section 2

Related Documentation

Parent Documents

Parent documents are those external, higher-level documents that contribute infor-
mation to the scope and content of this document. The following GLAS documents
are parent to this document.

a) GLAS Science Software Management Plan (GLAS SSMP), Version 3.0, August

1998, NASA Goddard Space Flight Center, NASA/TM-1999-208641/VER3/

VOL1.

b) GLAS Science Data Management Plan (GLAS SDMP), Version 4.0 July 1999,

NASA Goddard Space Flight Center, NASA/TM-1999-208641/VER4/VOLZ2.

c) GLAS Science Software Requirements Document (GLAS SSRD), Version 2.1

d)

August 2000, NASA Goddard Space Flight Center.

GLAS I-SIPS Software Architectural Design Document, Version 2.0, NASA God-
dard Space Flight Center, October 1998.

2.2 Applicable Documents

Applicable documents include reference documents that are not parent documents.
This category includes reference documents that have direct applicability to, or con-
tain policies binding upon, or information directing or dictating the content of this
document. The following GLAS, EOS Project, NASA, or other Agency documents are
cited as applicable to this architectural design document.

a)
b)

c)

d)

Data Production Software and Science Computing Facility (SCF) Standards and
Guidelines, January 14, 1994, Goddard Space Flight Center, 423-16-01.

EOS Output Data Products, Processes, and Input Requirements, Version 3.2,
November 1995, Science Processing Support Office.

NASA Earth Observing System Geoscience Laser Altimeter System GLAS Science
Requirements Document, Version 2.01, October 1997, Center for Space Research,
University of Texas at Austin.

Precision Orbit Determination (POD), Algorithm Theoretical Basis Document,
Version 2.2, October 2002, Center for Space Research, The University of Texas
at Austin.

Atmospheric Delay Correction to GLAS Laser Altimeter Ranges, Algorithm Theo-
retical Basis Document, March 2001, Massachusetts Institute of Technology.

Geoscience Laser Altimeter System: Surface Roughness of Ice Sheets, Algorithm
Theoretical Basis Document, Version 0.3, December 1996, University of Wis-
consin.

October 2002 Page 2-1 Version 3.0

GSAS Detailed Design Document Related Documentation

9)

h)

)

K)

2.3

Determination of Sea Ice Surface Roughness from Laser Altimeter Waveform, Algo-
rithm Theoretical Basis Document, Version 0 (Preliminary), December 1995,
The Ohio State University.

Laser Footprint Location and Surface Profiles, Algorithm Theoretical Basis Docu-
ment, Version 3.0, October 2002, Center for Space Research, The University of
Texas at Austin.

Precision Attitude Determination (PAD), Algorithm Theoretical Basis Document,
Version 2.2, October 2002, Center for Space Research, The University of Texas
at Austin.

The Algorithm Theoretical Basis Document for Level 1A Processing, Version 1.0,
October 2002, NASA Goddard Space Flight Center Wallops Flight Facility.

Algorithm Theoretical Basis Document: Derivation of Range and Range Distributions
From Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and
Vegetation Heights, Version 3.0, July 2000, NASA GSFC, et. al.

Algorithm Theoretical Basis Document for the GLAS Atmospheric Channel Observa-
tions, Version 0 (Preliminary), December 1995, Goddard Space Flight Center.

Information Documents

The following documents are provided as sources of information that provide back-
ground or supplemental information that may clarify or amplify material presented
in this document.

a)

b)

NASA Software Documentation Standard Software Engineering Program, NASA,
NASA-STD-21000-91, July 29, 1991.

Science User’s Guide and Operations Procedure Handbook for the ECS Project, Vol-
ume 4: Software Developer’s Guide to Preparation, Delivery, Integration and Test
with ECS, Final, August 1995, Hughes Information Technology Corporation,
205-CD-002-002.

GSAS Users Guide, Version 4.0, October 2002, NASA Goddard Space Flight
Center.

GLAS Standard Data Products Specification - Level 1, Version 6.0, October 2002,
NASA Goddard Space Flight Center Wallops Flight Facility, GLAS-DPS-2621.

GLAS Standard Data Products Specification - Level 2, Version 6.0, October 2002,
NASA Goddard Space Flight Center Wallops Flight Facility, GLAS-DPS-2641.

Data Production Software, Data Management, and Flight Operations Working
Agreement for AIRS, AMSU-A and MHS/AMSU-B, NASA Goddard Space Flight
Center, January 1994.

Version 3.0 Page 2-2 October 2002

3.1

Section 3

Design Issues

Requirements

GSAS was designed with many specific and several generic requirements in mind.
These requirements may be found in the GLAS Software Requirement Document.
Several of the more critical requirements are listed here:

3.2

The software will be designed for maximum portability and code-reuse.

When possible, science algorithm subroutines should be coded in a manner to
allow for re-use outside of GSAS. Subroutines, for example, should pass data
via arguments and not rely on the presence of global product data structures.

All Level 1 and Level 2 standard data products will be produced in an integer-
binary format. (The GLA16 HDF-EOS product is an exception to this.)

Input and output products will be delimited by start and stop times.
Full processing history will be available via metadata.

Standardized messaging and error-handling using local ancillary files will be
available to all subprocesses.

Changeable parameters will be defined in local ancillary files.

Implement the capability to fully and partially process and reprocess data
with several different scenarios, including:

- One processing string that starts with GLAS telemetry data (GLAOQO) as
input to create all output L1A products (GLA01-03).

- One processing string that starts with GPS-specific GLAS telemetry data
(GLAOOQ_xx) as input to create all output L1A GPS product (GLA04_GPS).

- One processing string that starts with L1A altimetry data (GLAO1) as input
to create an output waveform product (GLAO5).

- One processing string that starts with a waveform product (GLAOQ5) input
as to produce output elevation products (GLAO06, 12,13,14,15).

- One processing string that starts with L1A atmosphere (GLAO02) input and
produces output atmosphere products (GLA07,08,09,10,11).

- One processing string that starts with a waveform product (GLAOQ5) as
input to produce an output elevation product (GLAO6).

Single vs. Multiple Executables

In the earlier designs of GSAS, the team incorporated a single-executable strategy.
This approach changed in V2 to focus on multiple PGEs (Product Generation Execut-
ables). APGE is an executable program which performs a specific function. The ‘core’

October 2002 Page 3-1 Version 3.0

GSAS Detailed Design Document Design Issues

PGEs perform specific portions of the GLAS data processing and generate deliver-
able GLAS Data Products (Products). The core PGEs are accompanied by a set of util-
ity PGEs which perform such functions as creating ancillary data files, performing
guality assurance and generating browse products.

3.3 Software Reuse

The team recognizes that there will be several task—specific PGEs which will interface
with data created by the I-SIPS data processing system. In order to effect the reuse of
this software, the GLAS Team has implemented major components and subsystems
as shared libraries. These libraries are generic such that they may be used by several
different GSAS components without modification. It is intended that associated util-
ity software will be written to use these libraries in order to maximize code-reuse and
ease coding and maintenance tasks.

3.4 1/0O and Unit Conversion

The software reuse approach was especially important in the design of the GLAS
Product input/output routines. The 170 routines were designed in a modular fash-
ion to make them available for use in software outside of the core PGEs. All input/
output statements are implemented in product-specific subroutines. All data trans-
formations (scaling from integer to floating point and vice versa) are implemented in
product-specific routines. This insures consistency in the conversion process method-
ology and forces a great deal of granularity in the design. Additionally, care was
taken to minimize the number of support routines required by the 1/0 conversion
processes in order to maximize the potential for software reuse.

3.5 Reprocessing and Pass-Thrus

Reprocessing and partial-processing requirements dictated great care in the design of
GSAS. In addition to executing all science algorithms consecutively, it is required that
GSAS be able to run selected science algorithms with varying input data types. Pro-
cessing with a selected set of science algorithms and products is defined as a specific
processing “scenario”. The software not only must be able to execute selected science
algorithmes, it is required to rewrite selected products, partially replacing selected
data. An example of this is replacing the orbit on the primary elevation product
(GLAOG).

In order to accommodate the reprocessing requirement, the GSAS processing soft-
ware is designed to use “pass-thru” data management. The “pass-thru” concept dic-
tates that common data are passed from lower-numbered products to higher-
numbered products on input. In the design, the products can be input, output or
both. Science algorithms are required to use input data from the highest-numbered
product possible and pass computed data to requisite higher-numbered products.

Version 3.0 Page 3-2 October 2002

Design Issues GSAS Detailed Design Document

3.6 Data Buffering

Data buffering is a fairly complex process. GSAS is required to process data one sec-
ond at a time without buffering, except in two cases: the Atmosphere subsystem and
the L1A L_Att processing.

The Atmosphere subsystem ATBD has required that data be buffered to twenty sec-
onds. This buffering has been designed into the Atmosphere subsystem, such that
other portions of the software are not impacted by the added complexity. However,
during the implementation it was decided to minimize the buffering complexity by
adopting a constraint such that GLA08-11 will not be processed independently of one
another. This constraint somewhat limits the granularity of re-processing, but was
approved by the GLAS Change Control Board as an acceptable trade-off. The buffer-
ing concept is fully documented in the Atmosphere section.

L_Att processing is complicated by the issue of time delays aboard the spacecraft. All
data for one second of APID 1984 (PRAP) are not contained within a single one sec-
ond packet. In order to precisely time-align the relevant data, the L1A subsystem
uses a 6-record double-buffered algorithm to match the relevant LRS and IST data to
the APID19 shot times. Given the potential for missing data, some valid PRAP data
may be lost if its corresponding APID19 data are missing.

October 2002 Page 3-3 Version 3.0

GSAS Detailed Design Document Design Issues

Version 3.0 Page 3-4 October 2002

Section 4

Design Overview

4.1 GSAS Design Overview

The GSAS processing system is designed to be both efficient and flexible. The system
is designed for operational flexibility, considering data availability constraints and
reprocessing requirements. In order to meet these requirements, the design of the
software consists of up to four functional layers which work together to perform the
data processing function. From the bottom up, the first layer is a set of generic library
routines which form the foundation of the software. The second layer is comprised of
the science algorithm subsystem libraries, which perform the actual transformation
from raw data into GLAS products. The third layer is the subsystem managers, which
control the execution of the science algorithms. The fourth and final layer is made of
four core PGEs, executable “shells” which surround the subsystem managers and
provide standardized I/0, error handling, and initialization.

LOproc
PGE

L1A PGE

Atmosphere PGE

Altimetry PGE

Level 1A
Manager

Level 1B and 2
Atmosphere Manager

Level 1B Waveforms
Manager

Level 1B and 2 Elevation
Manager

Level 1A Library

Atmosphere Library

Waveforms Library

Elevation Library

Science Algorithms

Science Algorithms

’ Science Algorithms

Science Algorithms

utilty |,

PGEs

Common Libraries

Figure 4-1 GSAS Layers

4.2 PGEs

The GSAS PGEs are:
e GLAS LOproc, which processes GLAS L0 data;
= GLAS_L1A, which executes the Level 1A (L1A) subsystem;

= GLAS_AIt, which executes the Waveforms (WF) and Elevation (Elev) sub-
systems;

e GLAS_Atm, which executes the Atmosphere (Atm) subsystems;
= GLAS_Meta, which products inventory metadata files;.
< and Other PGEs which perform utility functions.

The first four PGEs are “core” PGEs. Figure 4-2 is a very simplified data flow diagram
which shows the relationship between GSAS PGEs and GLAS data products. Many
ancillary files and utilities are required for GSAS processing. These have been omit-
ted in order to show an overview of GSAS.

October 2002 Page 4-1 Version 3.0

GSAS Detailed Design Document Design Overview

GLAOO
APIDs

GLAS_LOproc

GLAO1 GLAO2 GLAO3 GLAO4

GLAO7 GLAO8

GLAO9 GLA10

GLA14 GLA13

Create_GLA16

GLAXX GLA16

Figure 4-2 Simplified GSAS Data Flow Diagram

Version 3.0 Page 4-2 October 2002

Design Overview GSAS Detailed Design Document

4.3 Files

Throughout this document, files are referenced as one of two types: GLA or ANC.
GLA files are, for the most part, fixed-length, integer-binary format Product files con-
taining Level 0-2 GLAS science data. GLA16 is the single Level-3 Product and is
HDF-EOS formatted. GLA files are both input and output to GSAS. ANC files are
requisite multi-format ancillary files. Some are supplied by the science team, others
are received from external data providers. The prime difference between GLA and
ANC files are that GLA files are deliverable data products, whereas ANC files are
not. These files are detailed in the GLAS Data Management Plan and GLAS Data
Product Users Guide.

4.4 Science Algorithms

GSAS science algorithms are published in the Algorithm Theoretical Basis Docu-
ments (ATBD) provided by the GLAS Science Team. The resulting code is grouped
into four ATBD subsystems separated by scientific discipline. These subsytems, sci-
ence data products, and the science algorithm libraries are listed in Table 4-1.

Table 4-1 Subsystem, Libraries and Products

Subsystem Library Output Products
L1A Processing I1a_lib GLAO01-04
Waveform Processing wf_lib GLAO5
Atmosphere Processing atm_lib GLAO7-11
Elevation Processing elev_lib GLAO06,12-15

The subsystems are designed such that data required by each subsystem is available
from a product (data file) written by a preceding subsystem. As a result there is very
little data dependence between the subsystems.

Associated with each ATBD subsystem is a corresponding Subsystem Manager.
These Managers use control input to determine what processes to execute within the
subsystem and what data to write.

45 Utilities

In addition to the core PGEs, there are several utility PGEs which perform various
data transformations and computations. These utilities use the same core library rou-
tines as the core PGEs. There are two main types of utilities:

= Utilities executed infrequently — based on static or near-static input. Examples
are:

- Reference orbit groundtrack file creation
- Create DEM file

October 2002 Page 4-3 Version 3.0

GSAS Detailed Design Document Design Overview

- Ingest and reformat geoid file

- Create regional masks data set

- Create global and regional load tide grids
- Assist in verifying product content

- Assist in processing spacecraft test data

= Utilities executed routinely as part of daily production processing. Examples
are:

- Calculate granule start times and ascending node times
- Create level 0 index files

- Subset Meteorological data files

- Create Browse products

- Verify QA products

Version 3.0 Page 4-4 October 2002

Section 5

Foundation Libraries

The base level of GSAS software is implemented as a set of core libraries. These
libraries are coded in a generic manner such that all GSAS software can make use of
the code. This design maximizes code reuse and all inherent advantages.

Library code is implemented in separate directories and grouped by functional area.
A single makefile in each library directory will compile the code into a dynamically-
linked shared library. A “master” makefile will compile all the libraries and create the
final binaries in one step. See the GSAS User Guide for details on file layout and com-
pilation specifics.

There is a set of dependencies between the libraries. Order in which libraries are com-
piled is important since libraries may depend upon other libraries for support rou-
tines.This is not relevant if the developer uses the supplied “master” makefile, but
the developer should be aware that these dependencies exist. This is illustrated in
Table 5-1.

Table 5-1 Library Inter-dependencies

To build... The following libraries are required...
platform_lib <none>
time_lib platform_lib
cntrl_lib platform_lib
err_lib platform_lib,
math_lib platform_lib
anc_lib platform_lib, cntrl_lib, err_lib, math_lib
prod_lib platform_lib, cntrl_lib, err_lib
file_lib platform_lib, cntrl_lib
geo_lib platform_lib, cntrl_lib, err_lib, math_lib, anc_lib
exec_lib platform_lib, cntrl_lib, err_lib, math_lib, anc_lib

5.1 The Platform Library (platform_lib)

platform_lib is the most basic library in the foundation libraries. Nearly all GSAS
code uses routines from the platform library. The purpose is to provide consistent
datatypes across all GSAS software, to provide a place for storing constants, and to

October 2002 Page 5-1 Version 3.0

GSAS Detailed Design Document Foundation Libraries

provide compiler-dependent F90 routines. Modules included in the platform_lib are

described in Table 5-2.

Table 5-2 platform_lib Modules

Module Description
kinds_mod Defines the basic GLAS datatypes, for example 2 byte integers, 4 byte
integers, 4 byte reals, and 8 byte reals.
types_mod Defines common complex GLAS datatypes, including structures. (depreci-

ated)

const_glob_mod

Defines common global constants. These constants are initialized as
parameters or have values read from an ancillary file.

const_atm_mod

Defines atmosphere-related constants. These constants are initialized as
parameters or have values read from an ancillary file.

const_elev_mod

Defines elevation-related constants. These constants are initialized as
parameters or have values read from an ancillary file.

const_|la_mod

Defines L1A-related constants. These constants are initialized as parame-
ters or have values read from an ancillary file.

const_wf_mod

Defines waveform-related constants. These constants are initialized as
parameters or have values read from an ancillary file.

Inbink

Returns position of the last non-blank character in a string. Provided for
those F90 implementation which do not support this function.

vers_platform_mod

Version information for the library.

5.2 The Control Library (cntrl_lib)

cntrl_lib provides control-related functions to GSAS software. Components include
routines for parsing “keyword=value” formatted files, string functions, user-inter-
face functions, and a common file control datatype. Modules included in the cntrl_lib
are described in Table 5-3.

Table 5-3 cntrl_lib Modules

Module

Description

centertext_mod

Centers a text string within an 80 character padded string.

compare_kval_mod

Compares keyvalues against label. Strings are converted to uppercase
before a comparison is performed. This ensures that keyvalues are not
case-sensitive.

doubleline_mod

Prints an 80 character double line to the supplied 10 unit.

fStruct_mod

Defines a generic GLAS file info structure. Also contains routines to initial-
ize and print a file info structure.

find_keyword_mod

Searches for the provided keyword within a set of provided values.

Version 3.0

Page 5-2 October 2002

Foundation Libraries

GSAS Detailed Design Document

Table 5-3 cntrl_lib Modules (Continued)

Module Description
getans Reads a character of input, and validates that input from a list of accept-
able values.
keyval _mod Defines a keyword=value datatype.

multimenu_mod

Returns a set of logicals based on user menu selection

parse_keyval_mod

Parses keyword and value components from argument string.

read_line_mod

Reads a line of input, skipping comments (#).

singleline_mod

Prints an 80 character single line

strcompress Compresses multiple spaces to a single space within a string
strtrim Trims white space from around a text string

tolower Converts alpha characters to lower case

toupper Converts alpha characters to upper case

writebanner_mod

Prints banner at start of processing

vers_cntrl_mod

Version information for the library.

5.3 The Error Library (err_lib)

err_lib provides status and error-related functions to GSAS software. err_lib is
designed to read messages from an ancillary file. Errors and status messages (hence-
forth referred as errors) are reported to an output ancillary file (if available) and to
standard output (stdout). Errors have negative numeric designations; status mes-
sages have positive designations. Errors are designed to be configurable as to the
severity of the error and frequency of printout.

Modules included in the err_lib are described in Table 5-4.

Table 5-4 err_lib Modules

Module

Description

ANCO06_mod

Writes an error message to the ANCO06 unit in a standard format. In order
to avoid cyclic dependencies, ANC06_maod will not use GLAS Error_mod
upon encountering an error (since GLAS Error WILL use ANC06_mod). A
result code will be returned, but the caller must act upon it, if necessary.

ErrDefs_mod

Defines the GSAS error data structure.

ErrorBoot_mod

Initializes the error to generic values before the ancillary error file is read.

Errorinit_mod

Perform initializations for the Error and Status function by extracting the
error variables from argument error strings. This routine does dynamic
array allocation so that the number of errors is not fixed. A routine is also
provided to print the parsed errors.

October 2002

Page 5-3 Version 3.0

GSAS Detailed Design Document Foundation Libraries

Table 5-4 err_lib Modules (Continued)

Module Description
GLAS_Error_mod Receives an error number as an argument, looks up the error, writes the
error to ANCO06 and stdout, and returns a severity code to the calling pro-
cess.
WriteError_mod Formats an error and writes to ANCO06 and stdout.
vers_err_mod Version information for the library.

5.4 The Math Library (math_lib)

math_lib provides standard math routines to GSAS software. Components include
bilinear interpolation and matrix multiplication. Modules included in the cntrl_lib
are described in Table 5-5.

Table 5-5 math_lib Modules

Module Description

¢_bilin_interp_mod Calculates the value of properties at a point by doing a bilinear interpola-
tion of the 4 points straddling it.

¢_matmul_mod Returns the product of two matrices.

c_minmaxmean_mod | Provides routines to compute statistics for the given parameter.

c_quadratic_mod Solves a quadratic equation up to rank of 4.

vers_math_mod Version information for the library.

5.5 The Ancillary Library (anc_lib)

anc_lib provides routines to read and parse GLAS ancillary files. GSAS ancillary files
are of various formats. Some ancillary files contain relatively static data while others
contain dynamic data.

Modules included in the anc_lib are described in Table 5-6.

Table 5-6 anc_lib Modules

Module Description

anc01_met_mod Reads meteorological (met) header data into a global data structure.
Structures exist for two met header files. Also verifies the existence of
associated met data files and provides a routine to write the met header
information to stdout.

anc07_mod Parses an ANCO7 file and calls specific routines to read each parsed sec-
tion.

anc07_atm_mod Reads and parses atmosphere-related constants from a constants ancil-
lary file.

Version 3.0 Page 5-4 October 2002

Foundation Libraries

GSAS Detailed Design Document

Table 5-6 anc_lib Modules (Continued)

Module

Description

anc07_glob_mod

Reads and parses global constants from a constants ancillary file.

anc07_elev_mod

Reads and parses elevation-related constants from a constants ancillary
file.

anc07_err_mod

Reads and parses error constants from a constants ancillary file.

anc07_Ila_mod

Reads and parses L1A-related constants from a constants ancillary file.

anc07_stat_mod

Reads and parses status constants from a constants ancillary file.

anc07_wf_mod

Reads and parses waveform-related constants from a constants ancillary
file.

anc08 pod_mod

Contains Precision/Predict Orbit Determination (POD) record length and a
flag to determine if POD is of predicted or precision quality.

anc09_pad_mod

Contains Precision Attitude Determination (PAD) record length, public
data structure, availability flag, and routines to initialize and read PAD
records.

ancl2_dem_mod

Contains Digital Elevation Model (DEM) record lengths, unit number, pub-
lic LandMask, and routines to read, calculate and print the DEM values.

an c13_geoid_mod

Contains the Geoid record length, public grid and routines to initialize and
read the geoid.

ancl6_ltide_mod

Contains the record length and unit of the load tide ancillary file.

ancl7_otide_mod

Contains the record length and unit of the ocean tide ancillary file.

ancl8 stdatm_mod

Reads and stores the standard atmosphere ancillary file.

anc24_rot_mod

Contains the record length and unit of the rotation matrix ancillary file.

anc25_gpsutc_mod

Reads and parses the GPS/UTC time conversion file.

anc27_surftype_mod

Reads and stores the surface type file.

anc29_index_mod

Reads, writes, and stores the GLAS_LOproc index file.

anc30_aer_mod

Reads and stores the global aerosol map ancillary file.

anc31_trop_mod

Reads and store the global aerosol trop map ancillary file.

anc32_gps_mod

Reads, writes and stores the GLAS_LOproc GPS correlation file.

anc33_utc_mod

Reads the UTC time conversion file.

anc35_ozone_mod

Reads and stores the ozone file.

anc36_atm_mod

Reads the atmosphere calibration file.

anc38_msf_mod

Reads the atmosphere multiple scattering factor file.

anc_hdr_mod

Reads and writes the limited header portion of selected ancillary files.

vers_anc_mod

Version information for the library.

October 2002

Page 5-5 Version 3.0

GSAS Detailed Design Document Foundation Libraries

5.6 The File Library (file_lib)

file_lib provides standard routines to open and close GSAS files using the passed file
info structures. Modules included in the file_lib are described in Table 5-7.

Table 5-7 file_lib Modules

Module Description

OpenFInFile_mod Opens an input file.

OpenFOutFile_mod Opens an output file.

CloseFile_mod Closes a file.
parse_fname_mod Parses the standard GSAS file naming convention.
vers_file_mod Version information for the library.

5.7 TheTime Library (time_lib)

time_lib is the only GSAS source code implemented in C. It is an implementation of a
GSFC time library and used by GSAS with little to no modification. time_lib provides

Version 3.0 Page 5-6 October 2002

Foundation Libraries GSAS Detailed Design Document

routines for converting to/from various time formats. Modules included in the
time_lib are described in Table 5-8.

Table 5-8 time_lib Modules

Module Description

dateinterface Has routines for the following functions:

-add two arrays holding times into a third array

-add a yymmdd and a day

-add a yyyymmdd and a day

-find the difference between two yymmdd's in days and seconds
-find the difference between two yyyymmdd's in days and seconds
-convert between yyyymmdd, hms, mjd, fday, and mjdsec
-convert yymd fday to J2000 days and fday

-convert J2000 days and fday to yymd fday

-convert yymmadd or yyymmdd to yyyymmdd

-convert yyyymmdd to yymmadd

-convert mjd to yymmdd

-convert mjd to yyyymmdd

-convert yymmadd to mjd

-convert yyyymmadd to mjd

-convert hhmmss to fday

-convert fday to hhmmss

-convert fday to hm with decimal seconds

-convert yyyymmdd to ddd

-convert yyyymmdd to yyyyddd

-convert yyyyddd to yymmdd

-convert mjd to mjdsec

-convert mjdsec to mjd

-convert mjdsec to sec

-check if yyyy is a leap year

j2000to19char_mod Converts J2000 seconds to 19 character ASCII representation.

vers_file_mod Version information for the library.

5.8 The Product Library (prod_lib)

prod_lib provides routines to read, write, and convert GLAS products. The routines
(and concepts) are fully described in the Common Functionality section. Modules
included in the prod_lib are described in Table 5-9 (where xx = a GLAS product num-
ber [01-15]).

Table 5-9 prod_lib Modules

Module Description
GLAOO_mod Contains routines for reading GLAOO APIDs.
GLAOO_xx_mod Contains public data structures for GLAOO APIDs and routines to initialize,

convert, and print the product and algorithm data structures.

GLAxx_mod Contains routines for reading and writing GLAxx product data structures.

October 2002 Page 5-7 Version 3.0

GSAS Detailed Design Document

Foundation Libraries

Table 5-9 prod_lib Modules (Continued)

Module

Description

GLAXxx_alg_mod

Contains public data structures for GLAxx algorithmdata and routines to
initialize and print the data structure.

GLAxx_prod_mod

Contains public data structures for GLAxx product data and routines to ini-
tialize print the data structure.

GLAxx_scal_mod

Contains public data structures for GLAxx scale data and routines to ini-
tialize and print the data structure. Also contains routines to convert from
product units to algorithm units and the reverse.

GLAxx_Pass_mod

Passes common data from a lower-numbered product/algorithm data
structure to higher-numbered product/algorithm data structures.

GLAxx_flags_mod

Contains routines for packing and unpacking GLAxx flags.

common_flags_mod

Contains routines for packing and unpacking common flags.

common_hdr_mod

Contains routines to read and write common elements of the product
headers.

conversions_mod

Contains routines for performing common data conversions.

get_numhdrs_mod

Searches through product headers to find number of headers.

prod_def _mod

Contains record sizes for all GLAxx products.

vers_prod_mod

Version information for the library.

5.9 The Exec Library (exec_lib)

exec_lib contains high-level routines which are common to each of the GSAS PGEs.
Much of the code which was in the original single executable has been modified and
moved into this library. Modules included in the exec_lib are described in Table 5-10.

Table 5-10 fexec_lib Modules

Module

Description

CheckOutput_mod

Loops through the file type structures to determine if any more output is
requested.

CloseFiles_mod

Closed any opened files, based on file control structure.

CntlDefs_mod

Initializes common control definitions.

Mainlnit_mod

Performs common initialization functions.

MainWrap_mod

Performs common wrap-up functions.

OpenFiles_mod

Opens requested files, based on file control structure.

ReadAnc_mod

Reads ancillary files, based on file control structure.

ReadData_mod

Reads data from opened files in a time-synchronous fashion.

Version 3.0

Page 5-8 October 2002

Foundation Libraries

GSAS Detailed Design Document

Table 5-10 fexec_lib Modules (Continued)

Module

Description

StdCntl_mod

Parses common control instructions from a Control files.

Write_AncVer_mod.

Writes ancillary file version info to ANCO06.

Write_LibVer_mod

Writes library version info to ANCO6.

check_recndx_mod

Utility function for comparing start/stop times of granules.

com_hdr_update

Updates the header data structures for product files.

fCntl_mod

Defines file control structures.

get_fileindex_mod

Utility function for determining file type from filename.

get_secstart_mod

Finds start of control file section.

parse_filecntl_mod

Parses file information from control file.

passid_mod

Holds passid information parsed from the control file.

vers_exec_mod

Version information for the library.

October 2002

Page 5-9

Version 3.0

GSAS Detailed Design Document Foundation Libraries

Version 3.0 Page 5-10 October 2002

Section 6

Common Functionality

GSAS code was designed to maximize software reuse capabilities. The foundation
libraries provide a code base which the developer can use to ensure consistency and
maximize code reuse among GSAS PGEs. The libraries provide standardized rou-
tines for such things as parsing control files, reading constants files, and reporting
error/status messages. By following GSAS conventions, PGEs can basically take
advantages of these services “for free.” The previous section introduced the compo-
nents of the foundation libraries. This section describes the functionality provided by
these libraries.

6.1 Control File Parsing

GSAS PGEs are designed to use Control files as the interface between GSAS and the
user (or controlling process). Control files provide dynamic control information to
PGEs.

PGEs are designed to take the name of the control file passed as a command-line
argument during each invocation of the PGE. Most PGEs should terminate with a
fatal error if the command-line argument is missing, the specified file does not exist,
or the file is unreadable. The exception to this rule is when the PGE provides a rudi-
mentary user-interface when invoked without a control filename. GLAS_Reader and
GLAS_APID, utilities, are currently the only instances of this exception.

GSAS control files are designed to be part of a larger control file used by one or more
PGEs. The larger control file includes sections which identify the PGE that will per-
form the task requiring the inputs contained in the section. Each section is bounded
by an "="sign in column 1, followed by the PGE name that requires the control
inputs. Exact section names will be shown in the PGE-specific control file section of
this document.

All GSAS control files are created in standard GSAS *“keyword=value” format. This
format is text-based and consists of a line containing a keyword/value pair delimited
by an equal sign (=). The ordering of the keywords is not relevant but should follow a
convention for consistency. Multiple instances of certain keywords are allowed. The
keyword is not case sensitive. Spaces are allowed, but not required. Comment lines
must be prepended by a “#” character. The keyword is limited to 255 characters; the
value is limited to 255 characters.

PGE sections within a control file contain both common and process-specific informa-
tion. The process-specific portions of control files will be provided within the docu-
mentation for each specific PGE. This section will document the common elements of

October 2002 Page 6-1 Version 3.0

GSAS Detailed Design Document Common Functionality

the control files. Within a control file section, some information is required, other is
optional. Required single-instance keywords include:

Table 6-1 Required Single-Instance Keywords

Keyword Value
TEMPLATE_NAME= Name of the control file template.
EXEC_KEY= Unique (per day) execution key
DATE_GENERATED= Date the control file was generated.
OPERATOR= Operator who generated the control file.
PGE_VERSION= Version number of the target PGE.

Optional multiple-instance keywords include:

Table 6-2 Optional Multiple-Instance Keywords

Keyword Value
PASSID= Pass-related information
TRACK= Track [number start_time stop_time]
INPUT_FILE= Input file [filename start_time stop_time]
OUTPUT _FILE= Output file [filename start_time stop_time]
WRITE_CONST= Signals that the specified constants should be written to ANCO6.

6.1.1 PASSID Specification

A PASSID section is required in the control file when creating GLA products. There
should be one instance of the following keyword/values for all tracks which fall
within the minimum/maximum time of the data being processed. This information
is required for GLAS_L1A, GLAS_Alt, and GLAS_Atm. This information is NOT
required for GLAS_LOproc or other utilities.

PASSI D=r evol uti on_nunxsp>passi d<sp>start _tinme<sp>stop_ti nme<
sp>equat or _crossi ng_| on<sp>nose_pat h_nunber.

Descriptions of the PASSID elements are provided in Table 6-3.

Table 6-3 PASSID Control Line Elements

Element Description
revolution_num integer, containing the auto-incrementing rev number.
passid 11-byte character, further described below.
start_time double-precision float, containing J2000 UTC time in seconds.
stop_time double-precision float, containing J2000 UTC time in seconds.

Version 3.0 Page 6-2 October 2002

Common Functionality GSAS Detailed Design Document

Table 6-3 PASSID Control Line Elements (Continued)

Element Description
equator_crossing_lon float, containing the equator crossing longitude.
nose_path_number integer, containing the NOSE path number.

The eleven-byte passid field will be treated as follows: prkkccctttt. Descriptions of
each element are provided in Table 6-4.

Table 6-4 passid Field Description

Field Description
p repeat ground track phase (integer, length=1)
r reference orbit number (integer, length=1)
kk instance (integer, length=2)
cce cycle (integer, length=3)
tttt track (integer, length=4)

6.1.2 Input/Output File Specification

Input and Output files are required to be designated using the GSAS-standard nam-
ing convention defined in Appendix A. The type of each file specified is determined

by parsing specific components of the filename which are required by all of the nam-
ing methods defined in the specification. These common components of all filenames
are:

HHHxx_mmm . . ff . eee

(where: HHH is the type identification, xx is the type id number, mmm is the release
number, ff is the file sub-type, and eee is the file extension.)

GSAS software uses the type identification, the type id number and the file sub-type

to determine what type of file is specified in the control file. The filetype-parsing rou-
tines are not case-sensitive when determining the type of file specified. However, the
filenames are case-sensitive during file opening and creation.

All files are required to be delimited by start and stop times. These times are floating
point values specified on the control line as J2000 time in seconds. On both input and
output, records are skipped until the time in the current record is greater than or
equal to the specified start-time and less than or equal to the specified stop-time.
Static ancillary files are required to have start-times and stop-times present for con-
sistency, but these are currently ignored.

The general formats for an input and output file specifications are:

| NPUT_FI LE=fi | e_nanme<sp>start _tine<sp>stop_tine
OUTPUT_FI LE=fi |l e_nane<sp>start _tine<sp>stop tine

October 2002 Page 6-3 Version 3.0

GSAS Detailed Design Document Common Functionality

Additionally, GLA product file entries should contain segment and version informa-
tion. This information is specified in the format:

| NPUT_FI LE=fi | e_name<sp>start_ti me<sp>stop_ti ne<sp>gran_rel
_NnumKksp>gr an_ver _nunksp>gr an_segment

OUTPUT_FI LE=fi | e_nane<sp>start _ti me<sp>stop_ti nme<sp>gran_re
| _nunksp>gran_ver _nunksp>gr an_segnent

Segment and version information fields are described in Table 6-5.

Table 6-5 File Segment and Version Fields

Field Description

gran_rel_num granule release number (CCB controlled, mmm in filenaming convention.)
Character max length of 20.

gran_ver_num granule version number (Auto-incrementing, nn in filenaming conven-
tion). Character max length of 20.

gran_segment orbit segment of the granule (if more that 1 segment, use 0).Character
max length of 1.

Files with INPUT_FILE and OUTPUT _FILE keywords must be listed in chronologi-
cal order based on start and stop times. The start time of one file may overlap the stop
time of another. In this case, data within the overlapping range will be written to the
first file and not the second.

6.1.3 Input Data Time Selection

As referenced in the Control File section, all files are required to be delimited by start
and stop times. PGEs which support time selection will skip that data which are out-
side the limits defined by start and stop times. This data will be read, but not pro-
cessed. Additionally, given the case of multiple input files of the same type, the PGE
will seemlessly skip from one file to the next when all data from the current file has
been read (or skipped via time selection).

Certain input ancillary files do not support input time selection but require, none the
less, start and stop times in their control file entry. This was a design decision
intended to promote consistency within the control file content. The start and stop
times for these ancillary files should encompass the entire time range of the input
data.

6.1.4 Output Data Time Selection

As with input files, all output files are required to be delimited by start and stop
times on their control file entry. PGEs which support time selection will not write that
data which are outside the limits defined by start and stop times. Additionally, given
the case of multiple output files of the same type, the PGE will seemlessly skip from
one file to the next when the current data time falls outside the range of the current
output file. It is important to note that input data time selection and output data time
selection are completely independent of one another. There is, however, a practical

Version 3.0 Page 6-4 October 2002

Common Functionality GSAS Detailed Design Document

relationship between the two, since output data for a particular time cannot be writ-
ten if no input data for that time are read (or specified).

6.1.5 Execution scenarios

Most core PGEs permit multiple execution scenarios. Certain sets of computations
have been grouped together by the software designers. Execution of these sets can be
specified via specific execution flags with the PGE control file. The detailed docu-
mentation for each PGE specifies what execution flags are available and the processes
they control. Additionally, there are dependencies between input file type, output file
type, and the execution flags. These dependencies define execution scenarios, which
will be described in the respective PGE detailed documentation.

6.2 ANCO7 Constants Files

ANCO7 files are used to provide GSAS with static, change-controlled parameters pro-
vided by the Science Team and used during processing of GLAS data. These parame-
ters were carefully selected such that these parameters could be modified without
forcing a recompilation of the processing software. It is critical that these files are
tightly change-controlled since unapproved modification could result in erroneous or
inconsistent data being generated during the creation of the GLAS Products.

There are several types of ANCO7 files. These types include a global constants file, an
error file, and constants files specific to each of the science algorithm categories.

Constants files are specified as input files within a particular PGE’s control file. The
global constants file and the error constants file are required for all executables.

GSAS ANCO7 files are delimited by section identifiers which differ (by design) from
control files section identifiers. Each section is bounded by the section name and an
"=". The section delimiters are defined as follows:

BEG_OF STATUS=
...Status section contents...
END_OF STATUS=

BEG_OF ERROR=
...Error section contents...
END_OF_ERROR

BEG_OF GLOBALS=
...Global constants section contents...
END_OF GLOBALS

BEG_OF ATM=
...Atmosphere constants section contents...
END_OF ATM

BEG_OF ELEV=
...Elevation constants section contents...
END_OF ELEV

October 2002 Page 6-5 Version 3.0

GSAS Detailed Design Document Common Functionality

BEG _OF L1A=
...L1A constants section contents...
END_OF L1A

All GSAS ANCAOT7 files are created in standard GSAS “keyword=value” format. This
format is text-based and consists of a line containing a keyword/value pair delimited
by an equal sign (=). The ordering of the keywords is not relevant but should follow a
convention for consistency. Multiple instances of keywords are not allowed. The key-
word is not case sensitive. Spaces are allowed, but not required. Comment lines must
be prepended by a “#” character. The keyword is limited to 255 characters; the value
is limited to 255 characters.

6.3 Invalid Values and Error/Status Reporting

This section documents the use of standardized methods of dealing with invalid data
and error/status conditions.

6.3.1 Invalid Values

Not all data received from GLAS will be suitable for science processing. In addition,
given the nature of the raw telemetry packets, some data may be missing. The con-
cept of an “invalid value” is used to signify that data is invalid or missing and should
not be used for processing. Invalid values are datatype-specific values which are
defined in the GLAS global constants module. These variables are assigned to Prod-
uct variables in order to indicate invalid or missing data. These values are defined in
Table 6-6. Great care should be taken to avoid using an invalid value during a calcu-
lation. Additionally, great care must be taken by both the programmer and data user
to determine if the variable in question is defined as potentially invalid. One can only
consider data to be invalid if the product documentation defines that variable as
potentially invalid and the variable has the appropriate invalid value respective to its
datatype.

Table 6-6 Invalid Values

Datatype Invalid Value

1 byte integer 127

2 byte integer 32767

4 byte integer 2147483647

4 byte real 3.40282E+38
X7TF7FFFFF

8 byte real 1.797693094862316E+308
X7TFEFFFFFFFFFFFFF

6.3.2 Exit Status

All GSAS PGEs are required to return an exit status indicating success or failure of
the process. This status is returned through an operating system call and can be que-

Version 3.0 Page 6-6 October 2002

Common Functionality GSAS Detailed Design Document

ried by other operating system processes. The supported exit status codes are gFA-
TAL=3 and gNO_ERROR=0.

Table 6-7 PGE Exit Status Codes

Value Description

0 Process completed with no errors.

3 Process failed.

Note that the Exit status was designed to return numbers consistent with the GSAS
error/status reporting facility’s error severity values. However, the exit status codes
are but a subset of the GSAS error severity codes.

6.3.3 Error and Status Reporting

GSAS uses a common error/status reporting facility. This ensures that error/status
reporting is handled in a consistent manner throughout the software. This facility is
based on the ANCO7 error file and is configurable by the user.

An important related point is that GSAS is designed such that only the main PGE
routine can terminate processing. Subroutines are not allowed to terminate process-
ing, but should indicate a fatal error by passing the appropriate error severity code
back to their calling processes. The calling process can then exit with the correct exit
status result code.

The ANCO7 error file is in standard GSAS “keyword=value” format. This format is
text-based and consists of a line containing a keyword/value pair delimited by an
equal sign (=). The keyword is not case sensitive. Spaces are allowed, but not
required. Comment lines must be prepended by a “#” character. As with other
ANCAOT7 files, the sections for error and status must be delimited by section identifiers.
Identifiers for each section are listed below.

BEG OF STATUS=
...Status section contents...
END_OF STATUS=

BEG OF ERROR=
...Error section contents...
END_OF ERROR

The format of the error/status content is defined in Figure 6-1. The keyword can have

KEYWORD=nnnnnnxtttttttttttttttttttttetttetttetttetttetttetttetttexsxffffff

Figure 6-1 Error Ancillary File Format

the value of “ERROR” or “STATUS” and identifies if the line contains an error or sta-
tus entry. The value is a text string with the specific format defined in Table 6-8.

October 2002 Page 6-7 Version 3.0

GSAS Detailed Design Document Common Functionality

Table 6-8 Error String Format

Character Positions Description

n 1-6 Error code (must be sequential within a section)

X 7,58,60 Space character (delimiter)

t 8-57 Message

S 59 Error severity (see Table 6-10)

f 61-66 Frequency of reporting (message is reported on 1st occurrence, then
every f'th time)

There is a specific error number for each error/status value. Within the ANCO7 file,
these error numbers are numerically split into multiple sub-sections. Errors have neg-
ative numeric designations; status messages have positive designations.

Each major portion of the GSAS software supported by the specific error file begins at
a different subsection number. Within a subsection, error numbers must be consecu-
tive The use of sub-sectioning is optional for a simple error file. The GSAS ANCO07
error file has 5 subsections. Table 6-9 lists each of the subsections and their starting
error/status number.

Table 6-9 Error Sections

Starting Numbers Description
-10001/10001 General error/status.
-20001/20001 L1A error/status.
-30001/30001 Waveform error/status
-40001/40001 Atmosphere error/status
-50001/50001 Elevation error/status.

GLAS error messages are designed to inform a user when the software has encoun-
tered a problem. GLAS status messages are designed to assist the user in observing
the flow of the processing. Status messages usually alert the user when the software
begins execution of a subroutine. A great deal of flexibility was designed into this
software in order to allow the user to customize the error/status display.

The user may modify error and status entries in order to configure the severity of the
error and frequency of printout. The user is cautioned to seek GLAS change-control
board approval before modifying the severity of an error. GSAS software will termi-
nate processing upon receipt of a fatal severity code. Thus, modifying the severity
may enable the software to execute in a non-tested mode.

The severity number controls how the GLAS software reacts when an error occurs.
The 4 levels of severity are described in Table 6-10. GLAS software will terminate on
a Fatal error. The frequency number controls how often an error message is printed

Version 3.0 Page 6-8 October 2002

Common Functionality GSAS Detailed Design Document

out. The first instance of a specific error is always printed. Subsequent instances are
printed out at the frequency specified. All instances are counted and the number of
occurrences printed in an output summary.

Table 6-10 Error Severity Codes

Severity Description

No error

Information/status

Warning

wW([IN| | O

Fatal

6.4 ANCO06 Metadata/Log File

GSAS PGEs create ANCO06 output files which contain processing information, error
messages, and status messages. These files are in a modified version of the GSAS key-
word=value format. The format of an ANCO06 entry is:

[tinme] [keyword]=[val ue]

The first field [time] is the time in UTC seconds. The time is that of the data being
processed when the entry was written (if no data have been processed, the time may
be 0 or an invalid value). The time is a GSAS-standard time representation (UTC sec-
onds). The second field [keyword] is a keyword describing the type of information
presented. The third field [value] is a formatted text message describing the event.
Comments are allowed in order to group messages logically. Comment lines are pre-
pended by the pound (#) sign.

The value field contains the actual message and its format varies dependent on the
type of message displayed. Error/Status values, for example, have several subfields.
The first field is the numeric error/status code. The second field is the error severity
(see Section 7 for details). The third field is the name of the routine which reported
the error. The fourth field is the standard error text with optional detailed text. The
format of the subfields within the value field is shown below:

error_num severity, calling routine, std _nessage opt_text

6.5 Product Internal Data Storage, Conversion and 1/O

The GSAS I/0 and unit conversion process is sufficiently complex and important to
describe in detail. The design of this process is what allows GSAS to meet the repro-
cessing requirements.

First, some definitions: (1) algorithm data (in units for algorithm use) are that data
which are in a form most favorable for display and calculation; (2) product data (in
units for 1/0) are data which are in a form most favorable for machine independence
and storage efficiency. It is important to understand the process by which algorithm

October 2002 Page 6-9 Version 3.0

GSAS Detailed Design Document Common Functionality

data gets transformed into product data (and product data gets transformed back
into algorithm data).

6.5.1 Product Modules

There are several different types of modules involved in the product conversion pro-
cess. These modules were briefly described in the prod_lib section but will be
detailed here. Table 6-11 (where xx = a GLA product number [01-15]) defines each
component. All modules are designed with software reuse as a primary goal.

Table 6-11 Product Module Functionality

Module Functionality
kinds_mod defines basic data types (4-byte integer, 8-byte real, etc.)
types_mod defines any global data structures
GLAXxx_prod_mod defines product-specific (where xx=product number)

record format and associated global product data struc-
ture. Each module also includes one subroutine to initialize
the product data and another to print the data in a human-
readable form.

GLAxx_mod contains routines to read (ReadGLAxx) and write
(WriteGLAXxx) the product data structure in binary format.

GLAxx_alg_mod defines product-specific global algorithm data structure.
Each module also includes one subroutine to initialize the
algorithm data and another to print the data in a human-
readable form

GLAxx_scal_mod defines product-specific global scaling data structure. Also
includes subroutines to initialize the scaling data, convert
from product to algorithm format (GLAxx_P2A), convert
from algorithm to product format (GLAxx_A2P), and print
the scaling data in a human-readable form.

common_flag_mod contains routines for packing/unpacking common flags.
GLAxx_flag_mod contains routines for packing/unpacking product-specific
flags.
6.5.2 Internal Product Data Storage

Data for each product are stored internally in two different formats. For each prod-
uct, there is one global data structure containing product data. These data are in the
exact same format as the integer-binary data written to and read from GLAS product
files. There is also a global data structure for each product containing algorithm-for-
mat (mostly double precision) data for use in scientific calculations. The product
modules and the GSAS Managers use these public data structures. However, data are
passed from the Managers to the science algorithms via the argument list.

Version 3.0 Page 6-10 October 2002

Common Functionality GSAS Detailed Design Document

6.5.3 Product Input/Output

GLAXxx product files are defined as integer-binary fixed-length files. These product
files will contain text header records (as described later) followed by binary data
records.

The GLAxx_prod_mod defines a specific data structure which exactly matches the
format of each data record of the appropriate product file. This data structure is used
in an unformatted direct-10 statement to read/write a data record from/to disk.

When multiple products are read simultaneously, a data record from a lower-num-
bered product is read before the data from a higher-numbered product. This is
important to the concept of “Pass-thru’ (explained in Section 6.5.5).

6.5.4 Product-to-Algorithm Conversion (P2A)

When a data record is read from disk into memory, the data are stored in the product
data structure. In order to be useful in scientific calculations, the data must be con-
verted from product format into algorithm format. The process is called “Product-to-
Algorithm Conversion”.

When a record of data is read, the values are stored in a product data structure. The
appropriate algorithm data structure is initialized to either zeros or invalid values, as
specified by the product documentation.

Each product variable is checked for an invalid value. If the data is determined to be
invalid, no conversion is performed. As a result of initializing the algorithm structure
appropriately, if the product variable is invalid, the algorithm value, by default, con-
tains an invalid value.

If the values are determined valid, the data will be converted from product to algo-
rithm format by one or more of the following processes.

= converting to unsigned (if necessary)

= scaling by a scale factor:
Algorithm_Value = Product_Value* Scale_Factor

= unpacking bits into individual flags.

For the most part, scaling is performed by multiplying the integer product value by a
floating point scale factor and storing the result in a double-precision algorithm vari-
able within the global algorithm data structure. The exceptions to this rule are flags,
which are unpacked with specific subroutines and a few variables which are used as
integers by the science algorithms.

6.5.5 Pass-Thru

After a product is read and converted to algorithm format, common data must be
passed from lower-numbered product/algorithm data structures to higher-num-
bered product/algorithm data structures. This pass-thru process enables re-process-
ing to be treated the same as normal processing. It is important that both product and

October 2002 Page 6-11 Version 3.0

GSAS Detailed Design Document Common Functionality

algorithm data is passed. The subsystem managers (discussed below) are designed to
take full advantage of the pass-thru process.

6.5.6 Managers

The subsystem managers ‘use’ the global algorithm data structures. If an intermedi-
ate conversion is necessary, the managers create local variables. The managers pass
the appropriate variables to the science algorithms via the argument list. (L1A is an
exception to this since the L1A routines basically use the entire data structures.) Spe-
cific algorithms are executed based on the state of control flags received from the PGE
in order to allow for re-processing.

A key concept is that the manager uses the variable in the highest-numbered product
for which it is responsible. For example, if the same variable is on GLAO5 and GLAO6,
the elevations manager always uses the variable from the GLAO06 algorithm struc-
ture, no matter if GLAOG is read for input or not. The pass-thru process ensures that
the value is always there.

After a science algorithm returns execution to the manager, the manager performs its
own pass-thru function. It copies any local variables back to the algorithm data struc-
ture and then passes any modified algorithm variables to the higher-numbered prod-
uct/algorithm data structures. This is essentially a repeat of the pass-thru process
described in 6.5.5, except the candidate variables are limited to those modified by
each respective science algorithm.

6.5.7 Algorithm to Product Conversion (A2P)

After the manager has finished executing science algorithms, each algorithm struc-
ture must be converted back to product data. This is essentially a reverse of the P2A
process.

First, the product structure is initialized. Then, each algorithm variable is checked for
an invalid value. If the variable is determined valid, the data will be converted from
algorithm to product format by one or more of the following processes.

< unscaling by a scale factor:
Product_Value = nint(Algorithm_Value/Scale_Factor)

= unpacking bits into individual flags.

For the most part, scaling is performed by taking the nearest integer of the double
precision algorithm value divided by a floating point scale factor. The result is stored
back into an integer product variable within the global product data structure. The
exceptions to this rule are flags, which are packed with specific subroutines and a few
variables which are used as integers by the science algorithms.

6.6 Product Headers

GSAS Products begin with ASCII header records containing information regarding
the processing which created the Product and the data contained within. These
header records are exactly the same size as a Product data record and contain ASCI|I

Version 3.0 Page 6-12 October 2002

Common Functionality GSAS Detailed Design Document

information in a slightly modified KEYWORD=VALUE format. In order to conserve
space on the product, the header entries are not delimited by the record length, but
by a semi-colon (;) and linefeed (ASCII 10).

By design, the first two header entries are the record length and number of header
records. This allows product readers to verify the record length and jump directly to
the first data record, if necessary. Most of the remaining information within the head-
ers is directly applicable to the generation of metadata files for EOS ingest.

Although the majority of entries in the Product headers are common to all products,
GSAS Products may contain special and specific header entries. This is handled by
product-specific header modules (GLAxx_hdr_mod). The common elements of the
Product Headers and associated subroutines are contained within a common header
module (common_hdr_mod). Most of the header software is contained within the
GSAS product library. The exception is the com_hdr_update routine, which is con-
tained within the exec_lib since it needs to interface more directly with the PGEs.

When a product file is opened for output, GSAS initializes the product’s header infor-
mation and determines how many records will be needed to contain the header data.
Many of the header entry values are already known at this time and can be filled in
immediately. A fixed number of bytes is reserved for those entries whose values must
be filled at a later time. GSAS writes the initial header records to the product and sets
the file pointer to the first data record. At the end of a granule, any those unfilled
header records are set to a value and the header records are re-written at the top of
the Product. Care is taken to make sure that the header records have not grown large
enough to overwrite any Product data.

6.7 Summary

Again, it is important for developers to realize the capability built into the GSAS
libraries. Use of the PGE model presented in the next section can lead to significant
reductions in development time and much greater consistency throughout the GLAS
software.

GLAS_Reader was written partially as an example for the capability gained through
using the libraries. With only about 1300 lines of heavily commented code (and most
other lines subroutine calls), GLAS_Reader uses the product library routines to read
and print nearly any GLAS file currently in use. The services it uses include:

= Full control file parsing.

= Time-selective processing.
= Multi-granule processing.
= Full error reporting.

e Full 170 support.

« Full ANCO6 logging.

October 2002 Page 6-13 Version 3.0

GSAS Detailed Design Document Common Functionality

Additionally, a fairly significant portion of the 1300 lines includes a rudimentary user
interface which allows a user to interact with GLAS_Reader without requiring a con-
trol file. This shows that the use of the libraries does not necessarily restrict the devel-
oper to follow the conventional GSAS model. The model provides developer with the
flexibility to handle special requirements within the basic development GSAS model.

Version 3.0 Page 6-14 October 2002

Section 7

GSAS Core PGEs

7.1 Function

GSAS core PGEs comprise the topmost level of the GSAS data processing software.
These executables are responsible for controlling the data processing. They perform
initializations, set constants, read ancillary data, handle data input and output, and
provide a global error facility. The basic design of all GSAS core PGEs is the same. As
such, this section will document a generic PGE design. Changes from this basic
design will be documented in the section for each specific PGE.

7.2 Requirements

Most requirements are PGE-specific and defined in the appropriate PGE section.
There are several high-level requirements which the core PGE approach satisfies.

= A control file will be used to control processing and specify input and output
files.

< Files will be opened and closed within the PGE and its associated managers.
Processing routines will not open or close files.

< Common values will be used to designated missing or invalid data on GLAS
products.

= A common error/status facility will be used.
= All error/status messages will be logged and written to a log file (ANCO06).
= \ersion information will be logged.

= Summary statistics such as number of records read/written and the number
occurrences of each type of status/error will be computed and logged.

= Reference data subject to change will be stored and retrieved from change-
controlled ancillary files (ANCOQ7).

7.3 Approach

= The system start and stop will be controlled by each respective executable at
the uppermost level.

= Processing will be performed one record at a time, though individual sub-
systems may buffer multiple records before processing. Multiple input prod-
ucts will be time-synchronized. (GLAS_LOproc is an exception to this.)

= Control flags will determine which subsystem or subsystem process will be
executed.

= Input and output data will be delimited by start and stop times.

October 2002 Page 7-1 Version 3.0

GSAS Detailed Design Document GSAS Core PGEs

= The system will provide for partial processing and reprocessing scenarios.

< Inorder to maximize code reuse and ease-of-use, PGEs will be designed to use
standard facilities provided by the GSAS libraries.

7.4 Design

Figure 7-1 shows the top-level structure chart of a generic GSAS core PGE. The basic
algorithm for a GSAS PGE is:

= Initialize (Mainlnit)
= Set the local execution flags (eCntrl_Init)
= Parse the Control File (GetControl)
= Open the specified files (OpenFiles)
= Print the control file (Print_Cntl)
= Read static ancillary files (ReadAnc)
= Wirite version info (Write_LibVer, Write_AncVer)
= Until all specified data are processed...
- Read Data (ReadData)
- Process Data (Manager)
- Write Data (Manager)
= Close all files and generate summaries (MainWrap)

The main routine for a GSAS PGE is local to the PGE - in other words, the source code
is located within the PGE subdirectory, not within a library. The main PGE routine
will perform other functions besides calling the appropriate subroutines. Code
within the main routine will

< [Initialize flags indicating start and end of processing

= Write its version number

= Write any associated subsystem version info

= Set a status code indicating success or failure on program termination

Additionally, in the case of a PGE with no Manager, subroutine calls to processing
code and actual data transformations may be located within the main routine.

Although not shown on the structure charts, nearly every GSAS routine calls
glas_error, the standard error facility, to report error and status messages.

Subsequent sections will identify and explain the functionality of each of the struc-
ture chart elements.

Version 3.0 Page 7-2 October 2002

GSAS Core PGEs GSAS Detailed Design Document

Mainlnit ¢ Core PGE Pt MainWrap
eCntrl_Init \ Manager(s)

ReadData

GetControl

OpenFiles Write_AncVer

Print_Cntl ReadANC

A 4
Write_LibVer

Figure 7-1 Top-Level Structure Chart

7.4.1 Mainlnit

Mainlnit is an element of the exec_lib. The Mainlnit structure chart is show in Figure
7-2. MainlInit performs the following functions:

= Initializes the ANCO06 output channel to stdout in order to display initializa-
tion error messages to the console.

= Initializes the default error subsystem. (error_boot)

= Initializes the standard file control structures. (fCntl_Init)

< [Initializes Product scaling values. (GLAXxx_scal_init)

= Initializes Algorithm data structures to default values. (GLAXxx_alg_init)

= Initializes Product data structures to default values. (GLAxx_prod_init).
74.1.1 Error_Boot

The error_boot routine is part of the error_lib. It initializes the glas_error facility with
a “bootstrap” set of error codes in order to facilitate error handling during the initial-
ization and file-opening phases of execution. These “bootstrap” errors will be over-
written once the ANCO7 error file is read later in execution.

7.4.1.2 fCntl_Init

fCntl_Init is within the fCntl_mod entry of the exec_lib. fCntl_mod contains both file-
related parameters and subroutines. These parameters include:

= Maximum number of file types

October 2002 Page 7-3 Version 3.0

GSAS Detailed Design Document GSAS Core PGEs

Mainlnit
error_boot GLAxx_prod_init
fCntl_Init GLAxx_scal_init
Y
GLAxx_alg_init

Figure 7-2 Mainlnit

e Maximum number of files per type

= Numeric indices for each filetype

= ASCII representation for each filetype
= Control file name

= An structure of arrays containing information regarding each file used in pro-
cessing.

fCntl_Init initializes the file information structures with information regarding
direct/formatted access, record lengths, multi-granule flags, granule index, and cur-
rent record number.

This module is very important to a maintenance programmer if he should need to
add a new file type to the GSAS software. Be aware, that the order of the definitions
within fCntl is critical. Changes in one internal data structure should be mirrored by
like changes within the other associated data structures. Also be aware that grouping
of the file types is important. New products should be added within the product sub-
section (GLAO1-GLA16). Likewise, new APIDs should be added within the APID
subsection (APID12-APID1984).

7.4.1.3 GLAXxx_scal_init, GLAxx_prod_init, GLAxx_alg_init

These routines are elements of the prod_lib. There exist a set of these routines for
each GLAS product. The scal_init routines initializes a product-specific data structure
to scale values which are used when converting between product and algorithm

Version 3.0 Page 7-4 October 2002

GSAS Core PGEs GSAS Detailed Design Document

units. The prod_init and alg_init routines initializes the respective product and algo-
rithm data structures to initial and/or invalid values.

7.4.2 eCntl_Init

eCntl_Init is a routine within eCntl_mod, which is local to each PGE. eCntl_mod con-
tains the local execution flags which the Manager uses to control process flow.
eCntl_Init initializes these flags. These flags are later set by GetControl based on val-
ues within the control file.

7.4.3 GetControl

GetControl is a routine local to each specific PGE. This routine reads and parses the
control file. It’s structure chart is in Figure 7-3. GetControl performs the following
functions:

= Initializes standard control structures (init_StdCntl)
= Opens the control file. (OpenCF)
= Reads the control file until it finds the specified section header.

= Reads the section contents, parsing local and standard (parse_StdCntl) control
file entries.

= Sets control flags based on control file entries.
= Closes the control file at the end of the section.

= Performs sanity-checking.

GetControl

init_StdCntl / Sanity_Check

OpenCF Parse_StdCntl

Figure 7-3 GetControl

Of particular importance in the routine is the fact that it parses control entries which
are specific to each individual PGE. Execution and option flags are defined in a local
eCntl module. GetControl sets these flags based on parsed control values. If a mainte-
nance programmer needs to add another control flag to a PGE, he must make
changes in both eCntl_mod and GetControl.

October 2002 Page 7-5 Version 3.0

GSAS Detailed Design Document GSAS Core PGEs

7.4.3.1 Init_StdCntl

Init_StdCntl is a subroutine within the StdCntl_mod of the exec_lib. It initializes the
text representation of standard (i.e.: common to all PGEs) control file elements.

7.4.3.2 OpenCF

OpenCF is a subroutine within the StdCntl_mod of the exec_lib. It uses a system call
to get the value of the control file argument. Platform-specific defines are used here to
set the correct position of the argument within the argument list. After getting the
name of the control file, OpenCF opens the specified file and scans the file for the
start of the specified section. If the control file cannot be opened, a fatal error is
returned to the calling process.

7.4.3.3 Parse StdCntl

Parse_StdCntl is a subroutine within the StdCntl_mod of the exec_lib. It takes control
file entries common to all PGEs and parses them, filling the appropriate data struc-
ture. In the case of INPUT_FILE and OUTPUT _FILE controls, the routine will
attempt to decode the filetype from the filename and fill the appropriate file control
structure.

7.4.3.4 Sanity _Check

Sanity_Check is a subroutine within the local GetControl module. It will examine the
parsed execution flags and file control structures in order to determine if the control
file specifications are valid for the specific PGE. Each PGE has a set of pre-determined
rules which dictate what combination of flags and files are appropriate for the
defined execution scenarios. Errors will be generated if Sanity Check finds a problem
with the control file configuration.

7.4.4 OpenkFiles

OpenFiles is an element of the exec_lib. It opens the first granule of each filetype
specified in the control file. The files are opened as direct or formatted based on infor-
mation in the file control structure. Normally, OpenFiles assigns a unit to each file it
opens and reassigns that same unit to each subsequent granule of that particular file-
type. However, in the case of multi-file granules (indicated by a flag in the file control
structure), OpenFiles will assign unique units to each file of the first granule and
open all files of the first granule. Those files which are not opened are checked for
existence and readability.

7.45 PrintCntl

PrintCntl is a subroutine of the StdCntl module within the exec_lib. It writes the con-
trol file contents to the ANCO06 log file.

7.4.6 Write_LibVer

Write_LibVer is an element of the exec_lib. It writes foundation library version infor-
mation to the ANCO6 log file.

Version 3.0 Page 7-6 October 2002

GSAS Core PGEs GSAS Detailed Design Document

7.4.7 ReadAnc

ReadAnc is an element of the exec_lib. It calls subroutines within the anc_lib to read
all requested static ancillary files. The contents of these files are kept in core memory,
and, by definition, only read once per execution.

Some special cases exist within ReadAnc:

= If available, the first two ANCO1 header files are read via ReadAnc, but subse-
quent ANCO1 header files are read in a time-synchronized fashion within
ReadData. Subsystem-specific MET routines read the actual MET science data.

= Precision Orbit Determination files (ANCO08) are not read, but the number of
POD files available are counted and this count is stored in a global variable
within anc08_pod_mod for later use. A POD data structure is initialized based
on the number of files available.

= Precision Attitude files (ANCO09) are via a special routine which converts the
provided GPS time to UTC time. A flag is set which can be used to determine
if valid PAD data exist.

= ANC29 and ANC32 files are read into memory and sorted to account for
potential PDS boundary problems. The ANC29.32 design is documented in
more detail in the GLAS_LOproc and GLAS_L1A sections.

7.4.8 Write_AncVer

Write_AncVer is an element of the exec_lib. It writes any version information regard-
ing ancillary files which were read to the ANCO6 log file.

7.4.9 ReadData

ReadData is an element of the exec_lib. It calls subroutines to read one second of
requested dynamic ancillary and product data in a time-synchronized fashion. It also
seemlessly handles end-of-granule conditions and sets file-specific data availability
flags in the appropriate file control structure. Figure 7-4 shows the structure chart for
ReadData.

Data are read in a logical order which allows lower-numbered products to pass val-
ues forward to data structures of higher-level products. See Section 6.5 for more
information regarding the “pass-thru” concept and product/algorithm data conver-
sion.

The time-synchronization methodology used by ReadData is rather complex. The fol-
lowing algorithm will attempt to describe the procedure:

= Save time and index of last data read.

= Initialize global time and index to invalid

= Loop through each input file type we are to synchronize
- Set data time and index to invalid
- Get the current granule index of the current filetype

October 2002 Page 7-7 Version 3.0

GSAS Detailed Design Document GSAS Core PGEs

ReadData
ReadRecord InvalidRecord read_met_hdr
ReadGLAXxx ReadANCO09 GLAXxx_prod_init
GLAxx_P2A GLAxx_alg_init
* next_granule
Pass_GLAxx
ReadGLA00
read_apid55
read_apid35

read_gla00_index read_apid19 read_apid25

Figure 7-4 ReadData

- Set the readnew flag to false.

- Loop within the current granule of the current filetype unless the file is not
available or we reach EOF

- Read a data record (ReadRecord)

- Cycle if EOF

- Cycle if data time < specified start time

- Set sync time to data time of record we just read
- Exit Interior Loop

- We exit exterior loop when we have a sync time and data time >= sync time
+- limit. If we exceeded the limit, decrement the counter and fill the record
with invalids. Write error message regarding data gap.

Version 3.0 Page 7-8 October 2002

GSAS Core PGEs GSAS Detailed Design Document

= Check all input files from which we sync for EOF. If all EOF, then set end-of-
processing flag and return to calling routine.

= If requested, synchronize ANCO09 with data time.

= If requested, synchronize ANCO01 with data time. Since we keep 2 ANCO01
header files in memory, move the 2nd to the 1st and read a new one into the
1st until data are synchronized.

Note that custom read subroutines are required for APIDs 19, 25, 35 and 55. These are
required since these APIDs have data misalignments while prevent them from being
read in the standard way.

7.49.1 ReadRecord

ReadRecord is an internal subroutine to ReadData. It calls file-specific routines to
read one second of the requested data type. ReadRecord will seemlessly move across
multiple granules, if necessary. If unsuccessful in reading the requested record, it will
set the specific data structure to invalid values and return a flag indicating failure.

7.4.9.2 next_granule

next_granule is an internal subroutine to ReadData. It closes the current granule and
open the next, if available. File control structures are set to indicate success or failure.

7.4.9.3 InvalidRec

InvalidRec is an internal subroutine to ReadData. It calls file-specific routines to set
the data structures of the target file to invalid values.

7.4.10 Managers

Managers are routines local to each specific PGE. Managers control and execute pro-
cess-specific tasks. The use of a Manager routine in a PGE is entirely optional. The
purpose of a manager is to provide a software layer between the fairly generic main
routine and the task-specific subroutines or subsystem libraries. A good rule of
thumb is to use a Manager for complex processing jobs, but to simply insert code into
the main routine for relatively simple tasks.

7.4.11 MainWrap

MainWrap is an element of the exec_lib. This routine is called just before the end of
execution to close any open files and write summary data to ANCO06. This summary
data includes:

< The number of each type of status message encountered.

= The number of each type of error message encountered.

= The number of records read for each input file used.
 The number of records written for each output file created.

October 2002 Page 7-9 Version 3.0

GSAS Detailed Design Document GSAS Core PGEs

Version 3.0 Page 7-10 October 2002

Section 8

GLAS LOproc

8.1 Overview

GLAS Level 0 APID files will normally be distributed as a PDS (Production Data Set)
in approximately 6 hour segments or as an EDS (Expedited Data Set) which will be
distributed as a Pass Data Dump. There will be several files, each containing a spe-
cific APID record for the segment. These segments will be sets of real-time and play-
back data received from the polar ground stations. The software that will pre-process
GLAS L0 data is the GLAS Level-0 Processor (GLAS_LOproc).

8.2 Function

GLAS_LOproc is a utility PGE that will time synchronize GLA0O APIDs in a manner
such that records within different GLAS products may be easily correlated. To do this
GLAS_LOproc creates a unique number (rec_ndx) for each packet of data collected by
the GLAS instrument. This index will be assigned to the matching records within
each Level 0 APID and will account for the 0.25 second waveform Altimeter Digitizer
packets

GLAS_LOproc will read each input APID and ancillary file listed in the control file
and produce a single index file (ANC29) and a single GPS time correction file
(ANC32). The ANC29 file will contain an index to each record in the set of files in
the PDS/EDS. The program will group the data in one-second intervals. The ANC32
file will be used during L1A processing to assist in precise laser shot time-tagging.

GLAS_LOproc will also perform limited error checking on the APIDs it reads. It will
signal an error if more than the maximum allowed APID records fall within a second
and write a warning message to ANCO06. Several fields within the APID primary
header will be checked against reference values. These errors will be flagged and
recorded. Duplicate APID records are checked, flagged and recorded, as well.

The core GLAS PGEs are used as a model for GLAS_LOproc. A major difference in the
GLAS_LOproc implementation is that it reads the APIDs one file at a time, rather than
synchronously reading all the APIDs record by record. Despite this difference, a great
deal of the PGE model was used to create GLAS_LOproc, which will ease software
maintenance chores.

Developer experience is that working with L0 spacecraft data can entail a great deal
of debugging with regards to both software and the actual data. With this in mind, a
significant amount of debug code is embedded within GLAS_LOproc. This code can
be turned on with compiler flags but will generate an extensive amount of output.
This output is very useful for debugging purposes but can drastically slow execution
time. The recommended method of running with debugging turned on is to redirect
stdout to a file which can be examined after the run.

October 2002 Page 8-1 Version 3.0

GSAS Detailed Design Document GLAS_LOproc

GLAS_LOproc records statistics such as the number of missing records, number of
received records, number of bad records, etc. The software checks for too many
occurrences of an APID per second. Duplicate data is flagged as an error (warning
not fatal) and the message written to ANCO06. Quality issues are tracked and reports
made of any problems/potential problems.

8.3 Approach

e GLAS_LOproc uses many of the standard routines from the model GSAS PGE
with only minor changes.

e GLAS_LOproc does not perform partial/selective processing or reprocessing.
There are no execution flags defined within GLAS_LOproc. Start and stop time
are required on control file INPUT_FILE and OUTPUT _FILE specifications for
consistency, but are not used.

e GLAS LOproc uses the operating system-based gsort for sorting tasks. Glue
code written in C is used in conjunction with gsort.

= Several constants are needed by GLAS_LOproc processing. Constants include
such things at mission elapsed time (MET) offsets, APID identification code,
APID record lengths, and sort order keys. These constants are included within
the GLAOO product module in order to facilitate code reuse and ease configu-
ration management.

= The manager functionality is within the main GLAS_LOproc routine.

= ReadData is not used since data is read file-by-file, rather than record-by-
record.

8.4 Input and Output Files

Table 8-1 lists the required inputs to GLAS_LOproc. Table 8-2 lists the outputs created
by GLAS_LOproc. Files which are specific to GLAS_LOproc are documented in this
section. See the appropriate section of this document or the GLAS Science Data Man-
agement Plan for details regarding the those files not specific to GLAS_LOproc.

Table 8-1 GLAS_LOproc Inputs

File Spec Type Source Short Description
gla00*_?7?.dat Level-0 APID EDOS GLAS Level-0 APID files (one
file per each APID type).
anc07*_00.dat Static Ancillary Science Team GLAS error file.
anc07*_01.dat Static Ancillary Science Team GLAS global constants file.
anc33*.dat Dynamic Ancillary ISIPS Operations Counter-to-UTC conversion file.
Control File Control ISIPS Operations Control file.

Version 3.0 Page 8-2 October 2002

GLAS_LOproc

GSAS Detailed Design Document

Table 8-2 GLAS_LOproc Outputs

File Spec Type Destination Short Description
anc29*.dat Dynamic Ancillary GLAS L1A Index file correlating APID
times.
anc32*.dat Dynamic Ancillary GLAS L1A GPS time correction file used for
precision timing of GLAS data.
anc06*.dat Dynamic Ancillary ISIPS Operations Standard metadata/processing

log file.

8.4.1 GLAOO APID Files

The GLAOO APIDs are Level-0 multi-rate spacecraft data files provided to the GLAS
data processing facility by EDOS. There is a separate file for each specific APID type
received from the spacecraft. These files are fully documented by the GLAS Instru-
ment Team and within the GLAS L1A ATBD. These APIDs are listed in Table 8-3.

Table 8-3 Supported APIDs

APID

Description

12

Altimeter Digitizer Large Sci Pkt

13

Altimeter Digitizer Small Sci Pkt

14

Altimeter Digitizer Eng Pkt

15

Photon Counter Sci Pkt

16

Photon Counter Eng Pkt

17

Cloud Digitizer Sci Pkt

18

Cloud Digitizer Eng Pkt

19

Ancillary Science Pkt

20

CT HW telemetry #1 Data Pkt

21

CT HW Telemetry #2 Data Pkt

22

CT HW Telemetry #3 Data Pkt

23

CT HW telemetry #4 Data Pkt

24

Small Software #1 TIm

25

Large Software Telemetry #1 Packet

26

LPA Data Pkt

27

Memory Dwell Packets 1

28

Memory Dwell Packets 2

31

DSP Code Memory Dump

October 2002

Page 8-3

Version 3.0

GSAS Detailed Design Document GLAS_LOproc

Table 8-3 Supported APIDs (Continued)

APID Description
32 DSP Data Memory Dump
33 C & T Dwell Packet
34 Event Message Packet
35 Memory Dump Packet
36 Table Dump Packet
38 Boresite Calibration Packet
48 GLAS Data Types Packet
49 Command History Packet
50 CT HW telemetry #5 Data Pkt
55 Large Software Telemetry #2 Packet
126 LPA Test Packet
1984 GLAS PRAP Packet

8.4.2 ANC33 MET Counter to UTC Conversion File

The ANC33 file is used to convert mission-elapsed time (MET), which is provided in
the APIDs, to GLAS-standard UTC time. Since the MET can be re-set by a roll-over or
a spacecraft upset it is important that this file be maintained and provided to the
GLAS processing facility in a timely manner. The file is delivered to ISIPS from the
ISF as described in the ISF/ISIPS Interface Control Document.

ANC33 file is a ANSI text file. Each line contains data for a single entry in the file
(data should not be hard wrapped). Comment lines are allowed and prepended by a
character. Each line contains the following information:

d_shdr_count <sp> d_shdr_count _prap <sp> d_utc <sp>
d_glas_osc_rate <sp> d_sc_osc_rate <sp> d_tdelay_digtzr <sp>
d_rdelay_digtzr <sp> d_pl Thias <sp> d_pl Rbi as <sp>

i _trkr_subjectl <sp> i _trkr_subject2 <sp> i _trkr_subject?2
<sp>i npl enent _tine

Each field is defined in Table 8-4.

Table 8-4 ANC33 Field Descriptions

Field Description

d_shdr_count double precision: the counter value in the secondary header on MOST
APIDS

d_shdr_count_prap | doube precision: the counter value in the secondary header of PRAP

Version 3.0 Page 8-4 October 2002

GLAS_LOproc

GSAS Detailed Design Document

Table 8-4 ANC33 Field Descriptions (Continued)

Field

Description

d_utc

double precison:

ues are converted

the J2000 UTC time in seconds to which the counter val-

d_glas_osc_rate

double precision

: the GLAS oscillator rate

d_sc_osc_rate

double precision

: the Spacecratft oscillator rate

d_tdelay digtzr

double precision

: time delay for digitizer in seconds

d_rdelay_digtzr

double precision

. internal range delay for digitizer in m

d_plTbias

double precision

: post launch time bias in seconds

d_pIRbias double precision: post launch range bias in m

i_trkr_subject(1) integer: the subject indicator for LRS tracker O

i_trkr_subject(2) integer: the subject indicator for LRS tracker 1

i_trkr_subject(3) integer: the subject indicator for LRS tracker 2

d_implement_time | double precision: the J2000 UTC time in seconds where the data are first

valid

Note that the Implement_time is the UTC time at which this conversion was valid.
GLAS_LOproc uses the designated start time of the first APID specified in the control
file to find the correct position within the ANC33 file based on the Implement_time
field.

8.4.3

The control file format and common elements are documented in Section 5 of this
document. Elements specific to GLAS_LOproc are described here.

Control File

The control file section delimiter for GLAS_LOproc is:
=CGLAS_LOP

Since GLAS_LOproc has no requirement for execution scenarios, there are no unique
keywords for the GLAS_LOproc control file. GLAS_LOproc will perform all functions
based on the presence of input and output files within the control file.

8.4.4 ANC29 Index File

The ANC29 index file provides GLAS_L1A with a method of time-correlating the
GLAS APID files. It contains an index record for every record in the input APID files.
ANC29 is a binary, fixed-length record file. Its format and fields are described in
Table 8-5.

8.4.5 ANC32 GPS File

The ANC32 GPS file provides GLAS_L1A with a method of computing precise tim-
ing calculations based on the last update of the onboard GPS. It contains records

October 2002 Page 8-5 Version 3.0

GSAS Detailed Design Document

GLAS_LOproc

Table 8-5 ANC29 Format/Description

Variable Type Bytes Description

utctime double precision 8 J2000 UTC time in seconds. Computed from the
MET counter in each APID’s secondary header.

rec_ndx long integer 4 Mission-unique index number assigned to the set of
APIDs defined by a one second duration and group-
ing rules. This number will be assigned to corre-
sponding data records in every GLAS data product.
The value is nominally (utctime - launchtime) * 10, in
seconds.

shot_ctr long integer 4 The appropriate shot counter from each APID.

rec_num long integer 4 The physical record number of the corresponding
data within the APID file.

apid long integer 4 The APID number (assigned by the spacecraft
team) of the APID.

DQFlag long integer 4 Data quality flag.

sort_order short integer 2 Sort order (for internal use).

spare short integer 24 Spare bytes to align data structure to 8-byte bound-
ary.

which identify each time the GPS clock is updated within the APID packets. ANC33
is a binary, fixed-length record file. Its format is described in Table 8-6.

Table 8-6 ANC32 Format/Description

Variable

Type

Bytes Description

rec_ndx

long integer

4 Mission-unique index number assigned to
the set of APIDs defined by a one second
duration and grouping rules. This number
will be assigned to corresponding data
records in every GLAS data product. The
value is nominally (utctime - launchtime) *
10, in seconds.

i_ScPosPktShot

short integer

2 Shot counter within APID 19 position
packet, starting at byte location1182.

i_useflag

short integer

2 Flag indicating if the data are valid (O=valid,
other=not valid).

utctime

double precision

8 UTC time in J2000 seconds where GPS
update occurred. This value corresponds
exactly to a UTC time in the ANC29 file.

FTLatch

double precision

8 Frequency board latch counter within
APID19, starting at byte location 1195.

Version 3.0

Page 8-6 October 2002

GLAS_LOproc

GSAS Detailed Design Document

Table 8-6 ANC32 Format/Description (Continued)

Variable Type Bytes Description

ScPosPktGMET double precision 8 MET counts within APID 19 position packet,
starting at byte location 1184.

d VTCW double precision 8 BCTCW latch value within APID19 starting
at byte location 1142.

d_VTCWp double precision 8 VTCW value at time of 0.1Hz pulse within
APID19 starting at byte location 1182.

GPSTime double precision 8 GPS receiver time in counts within APID19
starting at byte location 1172.

GPSppsGMET double precision 8 MET for GPS 0.1hz counter within APID19
starting at byte location 1201.

8.5 Design

Figure 8-1 shows the top-level structure chart of GLAS_LOproc. The basic processing
algorithm is summarized below:

Initialize (Mainlnit)

Set the local execution flags (eCntrl_Init)

Parse the Control File (GetControl)

Open the specified files (OpenFiles)

Print the control file (Print_Cntl)

Read static ancillary files (ReadAnc)

Write version info (Write_LibVer, Write_AncVer)

Until all APID files are read...

- Read APIDs and fill index and gps arrays (readglop)

Sort the index array (sort_gla00_index)

Sort the GPS array (sort_gps)

Convert the MET time into UTC time (utc_time_conversion)
Group the APID records and assign rec_ndx (IndexGrouping)
Check the index array for duplicates

Write the index arrays to file

Assign rec_ndx to GPS array entries

Validate data within GPS array and set useflag appropriately
Write GPS array to file

Close all files and generate summaries (MainWrap)

October 2002

Page 8-7

Version 3.0

GSAS Detailed Design Document GLAS_LOproc

8.5.1

GLAS_LOproc MainWrap
PGE Core
Routines

Mainlnit
eCntrl_Init IndexGrouping
GetControl
OpenFiles
Print_Cntl

Write_LibVer ReadGLOP utc_time_conversion

ReadANC

Write_AncVer

sort_gla00_index sort_gps

Figure 8-1 GLAS_LOproc Structure Chart

PGE Core Routines

Except where noted, the following PGE core routines are used exactly as defined in
the Core PGE Section of this document.

Mainlnit
eCntrl_Init
GetControl
OpenFiles
Print_Cntl
Write_LibVer
ReadANC
Write_ AncVer
MainWrap

Exceptions to normal core routine conventions include:

eCntl_Init does not define or set execution flags.
GetControl does not parse any execution flags.

Start and stop times are required on the INPUT/OUTPUT _FILE assignments,
but are not used by GLAS_LOproc to delimit processing. However, the start
time of the first APID specified is used as a reference time when finding the
correct coefficient for MET-to-UTC conversion. It is critical that this time is
specified correctly.

Version 3.0 Page 8-8 October 2002

GLAS_LOproc GSAS Detailed Design Document

852 ReadGLOP

ReadGLOP is a subroutine within the local glop_mod module. The glop_mod itself
contains several important constants. Since GLAS_LOproc creates its index and GPS
arrays in memory, a maximum length for each array is defined in this module. The
arrays themselves are defined and allocated in this module, as well.

ReadGLOP is called by the main GLAS_LOproc routine once for each APID which is
to be processed. ReadGLOP uses the APID number to read each record of the APID
into the appropriate data structure.

ReadGLOP uses standard Fortran direct-to-structure reads to read most APIDs.
However, several APIDs are not aligned on 4-byte boundaries. For these, ReadGLOP
calls specialized read subroutines which exist within the GLA0O0_mod module of the
product library.

If the APID read is an Ancillary Science Packet (APID19), GPS time is compared with
the previous GPS time. If a change has occurred, a GPS array element is filled with
the appropriate data.

The primary header of each APID record is converted and checked for error condi-
tions. Error checking includes the following:

= Primary header version =0
* Primary header APID number = expected APID

< Primary header APID size = expected_APID _size — (header_size — 1)
(actual value of the offset is 7)

= Primary header secondary header flag /=0
= Primary header sequence count delta=1

Duplicate records are checked by comparing the sequence counter and utctime
against previous values.

Fields within the index structure are filled and a “sort rank” is assigned based on the
APID type. This “sort rank” is temporarily assigned to the spare 4 bytes at the end of
the data structure. The shot counter is converted from a signed to unsigned value
before assignment.

Since the MET-to-UTC conversion has not yet been performed, the MET counter is
assigned to the utctime. However, an APID-specific offset is added to the MET
counter for alignment purposes in order to account for processing delays aboard the
spacecraft. These values were provided by the instrument developers and are
defined in the GLAOO_mod module within the product library.

8.5.3 sort_gla00_index

Sort_gla00_index is a C routine local to GLAS_LOproc. It provides a comparison func-
tion for the system gsort routine and calls gsort with the index array. gsort returns an
index array sorted by utctime (primary) and sort rank (secondary). Sorting the index
provides a list of interspersed APID records in time/rank order. Sorting is necessary

October 2002 Page 8-9 Version 3.0

GSAS Detailed Design Document GLAS_LOproc

so that the index_grouping module can correctly assign a rec_ndx to the correct
group of corresponding APID records.

An important programmer note is that a C header file (gla00_index.h) is required for
sort_gla00_index. If a programmer changes the Index file data structure, they must
change the gla00_index.h file in a corresponding manner.

8.5.4 sort_gps

Sort_gps is a C routine local to GLAS_LOproc which is nearly identical to
sort_gla00_index. It sorts the GPS array by utctime using a comparison routine with
the system gsort call. (This is actually done more for safety than necessity.)

The same caveat applies here as does with sort_gla00_index. A C header file
(gps_index.h) is required for sort_gps. If a programmer changes the GPS file data
structure, they must change the gps_index.h file in a corresponding manner.

8.5.5 utc_time_conversion

UTC_time_conversion is a routine local to GLAS_LOproc. It reads reference values
from ANC33 and uses those values to convert MET counter values within the index
array to UTC time.

The routine is passed the start time (taken from the control file entry) of the lowest-
numbered APID which has been read. It uses this as it’s initial time and searches
through the ANC33 file for the first implement time greater than or equal to the ini-
tial time.

Once it has found the correct implement time, it loops through the index array and
uses the associated refMET_Counts, refUTC_seconds, and Interval to convert the
MET counter to UTC time within the index. While looping, it checks to see if the pre-
viously computed UTC time is greater than the next implement time. If so, it reads
the associated ANC33 values and uses those for the next UTC conversions.

Additionally, while looping through the index file, the routine checks the GPS array
for matches between the APID19 index MET counter and GPS MET counter. If a
match is found, the GPS MET counter is converted to UTC time.

The UTC time conversion calculation is performed as follows:
UTC time = refUTC_seconds + (MET counter - refMET_Counts) * Interval
8.5.6 Index_Grouping

Index_grouping is a routine local to GLAS_LOproc. It scans through the index array
and assigns rec_ndx values based on a data alignment algorithm.

Sort_gla00_index has already sorted the index array based on MET counts and sort
rank. Based on information from the instrument team, certain APIDs are guaranteed
to have the same MET counter value for a particular second of data. The sort rank
takes this into account and sorts these APIDs at a higher level than others. Addition-
ally, the sort order also accounts for importance, guaranteeing that if an APID record

Version 3.0 Page 8-10 October 2002

GLAS_LOproc GSAS Detailed Design Document

exists for a certain second, it will be in a fixed position relative to other APIDs within
the one second interval.

The routine loops through the index array. When it detects one of the higher-ranked
APIDs, it computes a rec_ndx from the UTC time. This rec_ndx is assigned to the cur-
rent APID record and subsequent APID records until another higher-ranked APID is
detected. During the period of assigning the rec_ndx, several error checks are per-
formed. These are:

= The number of specific APID types assigned the same rec_ndx is checked
against a reference maximum-APID-per-second reference (which is defined in
GLAO00_mod.) If the maximum of a specific APID is exceeded, the rec_ndx
value is recomputed and assigned to the current and subsequent APIDs.

= The shot counter values of specific APIDs (AD_LgSci, AD_SmSci, AD_Eng,
PC_Sci, PC_Eng, CD_Sci, CD_Eng, AN_Sci, LPA) are checked for consistency.
If the shot counters within the same rec_ndx are inconsistent, the rec_ndx
value is recomputed and assigned to the current and subsequent APIDs

October 2002 Page 8-11 Version 3.0

GSAS Detailed Design Document GLAS_LOproc

Version 3.0 Page 8-12 October 2002

Section 9

GLAS L1A

9.1 Overview

GLAS _L1Ais acore GSAS PGE. It uses the L1A subsystem to create GLAS Level 1A
data from the Level 0 GLAS instrument data products. GLAS_L1A will use the
ANC29 and ANC32 files created by GLAS_LOproc to time-synchronously read the
appropriate GLAOO APID files.

9.2 Function

The L1A process includes applying calibration equations determined during GLAS
system testing to convert the measured counts into engineering units. The conver-
sions of the counts to engineering units will be one or more of several types: straight
polynomial conversion based on the measurement counts; multi-variable conver-
sions with dependence on additional measurements such as temperature; special
conversions based on a complex dependence of several measurements, interpretation
of data, table look-up, and geophysical based conversions. Some data will not require
conversion and will be retained in counts. The Stellar Reference System (SRS) atti-
tude and position data and the GPS data will be from standard existing systems sim-
ilar to those used on other spacecraft. The conversions and calibration equations for
the L1A subsystem are defined the L1A ATBD.

The altimeter data, including the waveforms, are packaged into the GLAO1 data
product. The atmospheric data from the photon counters and the cloud digitizer, as
well as supporting data, are packaged into the GLAO02 data product. Both GLAO1 and
GLAO02 include location data obtained from the predicted orbit file. The GLAS instru-
ment engineering and housekeeping data are stored in the GLAO03 data product. The
SRS and GPS data along with the laser pointing monitor data will be packaged into
the GLAO04 data product.

9.3 Design Approach
The following design criteria are specific to GLAS_L1A.

e GLAS_L1Afully uses the standard routines from the model GSAS PGE.

e GLAS_L1A can perform partial processing, but not reprocessing. GLAS_L1A
does perform time-based selective processing. There are, however, dependen-
cies between L1IA_Atm and L1A_Alt. Partial-processing will not yield the
same results for certain parameters as full-processing.

e The ANC29 file (created by GLAS_LOproc) is used to read GLAOO data from
the appropriate APID file in the correct order.

October 2002 Page 9-1 Version 3.0

GSAS Detailed Design Document

GLAS_L1A

= Due to issues due to aligning multi-rate data across PDS boundaries, the
ANC?29 and ANC32 files are read into core and re-sorted. This is a break from
the concept of normal record-by-record processing.

= L1AMgr is specific to the L1A subsystem. The L1A manager is used to control
all L1A-specific science algorithm processes and interfaces directly with the
L1A subsystem.

9.4 Input and Output Files

Table 9-1 lists the required inputs to GLAS_L1A. Table 9-2 lists the outputs created by
GLAS_L1A. See the GLAS Data Products Specifications Volumes or GLAS Science
Data Management Plan for details regarding the these files.

Table 9-1 GLAS_L1A Inputs

File Spec

Type

Source

Short Description

gla00*_?7?.dat

Level-0 APID

EDOS

Level-0 APID files (one file per
each APID type).

anc07*_00.dat

Static Ancillary

Science Team

Error file.

anc07*_01.dat

Static Ancillary

Science Team

Global constants file.

anc07*_05.dat

Static Ancillary

Science Team

L1A constants file.

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.
anc29*.dat Dynamic Ancillary GLAS_LOproc APID index file.
anc32*.dat Dynamic Ancillary GLAS_LOproc GPS time correlation file.
anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.
anc20*.dat Dynamic Ancillary UTexas Predicted orbit file.

anc45*_01.dat

Static Ancillary

Science Team

GLAO1 metadata input file.

anc45* 02.dat

Static Ancillary

Science Team

GLAO2 metadata input file.

anc45* 03.dat

Static Ancillary

Science Team

GLAO3 metadata input file.

anc45*_04.dat

Static Ancillary

Science Team

GLAO4 metadata input file.

Control File

Control

ISIPS Operations

Control file.

9.5 GLAS L1A PGE
Figure 9-1 shows the top-level structure chart of GLAS_L1A. The basic processing

algorithm is summarized below:

= Initialize (Mainlnit)

= Set the local execution flags (eCntrl_Init)
= Parse the Control File (GetControl)

Version 3.0

Page 9-2

October 2002

GLAS_L1A

GSAS Detailed Design Document

Table 9-2 GLAS_L1A Outputs
File Spec Type Destination Short Description

gla01*.dat L1A Product GLAS L1A GLAS L1A Altimetry product file.
Contains the waveforms and the
altimeter and timing data
required to produce higher level
range and elevation products.

gla02*.dat L1A Product GLAS_Atm GLAS L1A Atmosphere product
file. Contains the normalized
backscatter, photon counter,
cloud digitizer, timing, and
location data required to pro-
duce the higher level atmo-
sphere data products.

gla03*.dat L1A Product Archive L1A Engineering product file.
Contains the GLAS instrument’s
engineering and housekeeping
data.

gla04* 01.dat L1A Products UTEXAS L1A LPA product file.

gla04*_02.dat L1A Products UTEXAS L1A LRS product file.

gla04*_03.dat L1A Products UTEXAS L1A GYRO product file.

gla04* 04.dat L1A Products UTEXAS L1A IST product file.

gla04*_05.dat L1A Products UTEXAS L1A BST product file.

gla04*_06.dat L1A Products UTEXAS L1A SCPA product file.

gap0l*.dat L1A Quality QA L1A Altimetry quality file.

gap02*.dat L1A Quality QA L1A Atmosphere quality file.

gap03*.dat L1A Quality QA L1A Engineering quality file.

gap04*.dat L1A Quality QA L1A SRS/GPS/laser pointing
quality files.

anc06*.dat Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.

= Open the specified files (OpenFiles)
= Print the control file (Print_Cntl)

= Read ancillary files (ReadAnc)

= Write version info (Write_LibVer, Write_AncVer)
= Until all data are processed...

- Execute the LIA_Manager

e Close all files and generate summaries (MainWrap)

October 2002

Page 9-3

Version 3.0

GSAS Detailed Design Document

GLAS_L1A

PGE Core

Routines |«

Mainlnit
eCntrl_Init
GetControl
OpenFiles
Print_Cntl

Write_LibVer
ReadANC
Write_AncVer
Write_eCtrl
ReadData

GLAS_L1A

L1A_Mgr

951 PGE Core Routines

checkoutput
(PGE core)

Figure 9-1 GLAS_L1A Structure Chart

>

MainWrap

PGE core routines are used exactly as defined in the Core PGE Section of this docu-

ment.
= Mainlnit
e eCntrl_Init
= GetControl
e OpenFiles
e Print_Cntl
= Write_LibVer
e ReadANC

< Write_AncVer

= ReadData
e MainWrap

9.6 L1A Manager (L1A_Mgr)

The L1A Manager controls execution of the L1A subsystem, passes variables from the
GLAOQO0 APIDs to the L1A products, and handles granule start/stop. The manager
controls execution of the science algorithms based on flags received from the control
file via GLAS_L1A. Figure 9-2 shows the L1A Manager Structure Chart. Figure 9-3

shows a flow chart of the L1A Manager.

L1A Magr is passed arrays of output file control structures and execution flags. It
accesses product and algorithm data directly from the requisite public data struc-

Version 3.0

Page 9-4

October 2002

GLAS L1A GSAS Detailed Design Document

PGE Core Routines
L_ALT_QA
glaxx_hdr_init - Q
glaxx_hdr_update L1IA M
com_hdr_update < =
Write_glaxx_hdr
— — L_ATM_QA
GLAS_Error _ _Q
L_ENG_QA
calc_shot_time
L_ATT_QA
est_shot_time
A 4
C_InterpPOD L_ALT L_ATM L_ENG L_ATT

Figure 9-2 L1A_Mgr Structure Chart

tures. Execution flags are defined in eCntl_mod; file control structures defined in the
fCntl_mod component of the exec_lib, and product/algorithm data within the
GLAO00, GLAO1, GLA02, GLAO03, and GLA04 components of the product_lib.

The first thing the manager does is check for an end-of-granule condition within each
defined output file by comparing the nominal time of data (set by ReadData_mod)
with the appropriate stop time within the specific file data structure. If an end-of-
granule condition is detected, final QA routines are called and the product and QA
files are closed. If another granule of the same type has been specified in the control
file, the manager opens the appropriate product and QA files and loops to verify the
stop time of the new granule is greater than the nominal time of data.

After checking the granule times, processing begins. The manager calls
calc_shot_time, which computes precise 40 per second timing information. It then
calls C_CalcSpLoc which computes 40 spot locations based on the 40 per second tim-
ing information and the location of satellite position interpolated from the predicted
orbit file (ANC20).

Next, the manager executes several science algorithms based on its execution flags
and data availability. L_Eng, L_Alt, L_Atm, and L_Att are called. Each returns a flag
indicating if the appropriate data product should be written. Values which are passed
directly from one product to another are set appropriately.

QA routines are called to process QA information and the WriteL1A routine is called
with the appropriate flags to write data to the product files. Before writing a record,
WriteL1A verifies that the appropriate output file exists and that the nominal time of
data is greater than the start time specified in file control structure. If the nominal

October 2002 Page 9-5 Version 3.0

GSAS Detailed Design Document GLAS L1A

call GLAS_Error

L1A_Mgr
7/21/00 calc_shot_time

Set GLAO1 rec_ndx,shot
time, location

gerform_L_Atm AND
ATM data_avail?

Set d_thresh_xing, GLA02

rec_ndx, time, location

Figure 9-3 L1A Manager Flow Chart

time is less than the start time, the data record is not written. An appropriate error
message is written to ANCO6 if a record is skipped.

9.7 PGE/Manager Implementation Details

This section discusses specific aspects of the PGE/Manager implementation which
should be addressed in more detail.

9.7.1 ANC29/ANC32/GLAOQO Input

ANC?29 data are handled differently than most core PGE 1/0. Due to potential PDS
boundary problems (for example, the waveform data for a particular second may be
on a different PDS than the corresponding ancillary science data), all input ANC29
granules are read into memory by the ReadAnc core PGE routine. This array is
dynamically allocated based on the number of records indicated in each ANC29 file
header. The internal file number from which the ANC29 data are read is stored into a
spare byte in the array so that when GLAOO data are read, the corresponding GLAQO

Version 3.0 Page 9-6 October 2002

GLAS L1A GSAS Detailed Design Document

file is used. After the ANC29 granules are read into memory, the data are sorted to
guarantee the correct time order. ANC32 data are loaded into memory similarly.

ReadData actually “reads” the ANC29 and ANC32 data on a second-by-second basis
from memory. As the specialized ANC29/32 1/0 was a fairly late design decision,
this implementation minimized changes to the ReadData logic. ReadData uses the
ANC?29 data to read the correct records from the various GLAQOO APID files. It reads
1-second groups of APID records using the physical record number, APID type, and
internal file number to determine the correct position within the GLAOQO files.

ReadData determines the content of a 1-second group by examining ANC29 rec_ndx
values. “rec_ndx” is described fully in the GLAS_LOproc section, but suffice to say, it
is an integer corresponding to 0.1 second utctimes. For the most part, rec_ndx values
for APIDs of a particular second are the same exact value. However, in the case of
APIDs which straddle PGEs, the values may not be exactly the same. To handle this
case, ReadData will consider that rec_ndx values which correspond within 0.9 sec-
onds are part of the same second. This value is a constant defined in GLA00O_mod.f90
as “rec_ndx_slop”.

9.7.2 Missing APIDs

Different GLAS APID packets originate from different subsystems of the GLAS
instrument. Depending upon the instrument state, APIDs may or may not be present
in the data stream. In addition, data drop-outs present the possibility of missing data.

The L1A Manager sets an array of flags (APID_Av_FIg) to indicate present or missing
data. Asignal flag is set for each 1-second APID record. The complication arises when
checking the 1/4 second APID waveform records AD_LgSci, AD_SmSci). In order to
figure out which of the four records are missing, the manager examines shot
counters. By definition, the shot counter in the Ancillary Science (AN_Sci) APID will
match the first shot counter in the first corresponding waveform record. The manager
uses this knowledge to set positional flags that indicate which of the 1/4 waveform
APIDs are missing.

If at least one of the waveform records or the AN_Sci record is available, LLA_Mgr
calls L_Alt and a GLAO1 record is written. If the Photon Counter Science (PC_Sci),
Cloud Digitizer Science (CD_Sci), or AN_Sci records are available, LIA_Mgr calls
L_Atm and a GLAO2 record is written.

The GLAO1 product file is a little different than the other GLAS products in that it
contains different record types. It has the following record types: main, large wave-
form, and small waveform. The main record type occurs once per second. The large
waveform type occurs five per second. The small waveform type occurs twice per
second. A record identifier (i_gla01_rectype) within each record identifies what type
that record is. If at least one of the waveform records or the AN_Sci record is avail-
able, the Main record type exists in GLAOL for a particular second. If at least one of
the waveform records is available, the waveform type (small or large) records exist in
GLAOL1 for that second.

October 2002 Page 9-7 Version 3.0

GSAS Detailed Design Document GLAS L1A

9.8 L1A_Subsystem

Figure 9-4 illustrates the processes that comprise the L1A subsystem.

rawTime_In

25
Calculate Shot
Time

Time_Out

Time_Out Time_Out \

Time_Out

Eng_In
Eng_Out

Atm_In
Eng_Out

2.2
L1A Atmosphere
Processing

2.4
L1A Att
Processing

2.1
L1A Altimetry
Processing

2.3
L1A Engineering
Processing

It_In

Eng_Out

Alt_Out POD_Out POD_Out POD_Out POD_Out Att_Out

2.6
Get Predicted
Orbit

——POD_In

Figure 9-4 Level 1A Computations

9.8.1 Subsystem Design Decisions and Assumptions
The following design decisions were made:

= We will perform the precision shot time calculation in its own module since
this information is required for geolocation.

= Any Altimetry data required for L_Atm will be computed in L1A_Mgr.
The following assumptions were made:

= L1A will not be executed if L_Eng is not executed.
9.8.2 DFDs and their Descriptions
9.8.2.1 Level 1A Altimeter Processing

The purpose of the Level 1A Altimeter Processing (process 2.1) is to generate the data
to be stored on the Level 1A Altimeter Data product (GLAO1). This process performs
engineering unit conversion on the raw Level 0 altimetry data (Alt_In) to obtain the
Level 1A altimetry data in engineering units. Any engineering/ housekeeping data
that are required to be on the GLAO1 data product are collected here and placed in

Version 3.0 Page 9-8 October 2002

GLAS L1A GSAS Detailed Design Document

the output structure. Quality assessment computations are performed, collected and
placed in an output QA structure.

9.8.2.2 L1A Atmosphere Processing

The purpose of the L1A Atmosphere Processing (process 2.2) is to generate the data
to be stored on the Level 1A Atmosphere Data product (GLAO02). This process per-
forms engineering unit conversion on the raw Level 0 atmosphere data (Atm_In) to
obtain the Level 1A atmosphere data in engineering units. Any engineering/ house-
keeping data that are required to be on the GLAO2 data product are collected here
and placed in the output structure. Quality assessment computations are performed,
collected and placed in an output QA structure.

9.8.2.3 Engineering Data Processing

The purpose of the Engineering Data Processing (process 2.3) is to generate the data
for the Level 1A Engineering Data product (GLAO3). This process performs engineer-
ing unit conversion on the raw Level 0 engineering/housekeeping data (Eng_In) to
obtain the Level 1A engineering data in engineering units. Any Level 0 data that are
not stored on either GLAO1, GLAO2, or GLAO04 are collected here and placed in the
output structure. Quality assessment computations are performed, collected and
placed in an output QA structure.

Additionally, specific parameters of the Eng_Out structure are passed to the Altime-
try and Atmosphere processors.

98.24 Collect Instrument and S/C Position and Attitude

The purpose of process 2.4 is to collect the GPS data, instrument and S/C position
and attitude data and to generate the L1A Position and Attitude data product
(GLAO04). The APIDs used to generate GLAO4 include APID19, APID26, and
APID1984. The GLAO4 product is required for input to the precision orbit and atti-
tude determination algorithms. This process checks the Level 0 packets for errors,
configures the data for output and collects QA data.

Due to internal spacecraft/instrument timing issues all data corresponding to one
second of GLA04 data may not be within one second of APID1984. To align the LRS
and IST data to corresponding APID19 shot times, a 6 second double-buffering algo-
rithm is used to match the LRS and IST data with corresponding APID19 shots. To
complicate matters, the LRS and IST data occur at a rate of 10/second, whereas the
APID19 shots occur at a rate of 40/second. The algorithm finds the APID19 shots
closest to the LRS/IST data and merges the APID19 and AP1D1984 data into a single
one second GLAO04 record.

9.8.25 Calculate Shot Time

The Calculate Shot Time process (process 2.5) will generate the precise time of each
laser shot. The actual methodology of the time calculation depends upon the pres-
ence of the Ancillary Science (AN_Sci) APID. If AN_Sci is not present, 40-per-second
time is generated linearly using a 0.025 increment. If AN_Sci is available, the time
will be calculated from the laser fire time, GPS time, and the GPS latch time. Offsets

October 2002 Page 9-9 Version 3.0

GSAS Detailed Design Document GLAS L1A

and calibration factors will be applied as necessary. The process is fully described in
the LLA ATBD.

98.2.6 Get Predicted Location

The Get Predicted Location process (process 2.6) obtains the latitude and longitude
for each shot from the predicted orbit file using common routines. The shot times are
input, the predicted orbit file is interpolated to get the spacecraft position vector for
each shot time, and then the latitude and longitude are computed from the position
vector. The common routines ¢_intrpPOD and c¢_calc_sploc will be used for the calcu-
lations. The common routines will be called directly by the L1A Manager; it is not
necessary to generate code for the Level 1A Computations subsystem.

Version 3.0 Page 9-10 October 2002

Section 10

GLAS_Alt

GLAS_Altis a core GSAS PGE. It uses the Waveform and Elevation subsystems to
create GLAS Level 1B and 2 data from the Level 1 GLAS altimetry data products.
GLAS_AIlt will read the GLAOL file created by GLAS_L1A to create the GLAO5,
GLAO06, and GLA12-15 products. GLAS_Alt can also read the GLAOS5 file which it cre-
ated in a separate processing scenario to create GLA06 and GLA12-15. Additionally,
GLAS_Alt can read the GLAO5 and GLAOG files created in a separate processing sce-
nario to generate GLA12-15.

10.1 Function

GLAS_AIlt comprises both the Waveform and Elevation subsystems.

The Level 1B Waveforms subsystem computes the geolocation, and produces wave-
form-based information required to produce the elevation products (GLAO5).

The Levels 1B and 2 Elevation Computation subsystem generates all elevation Stan-
dard Data Products, associated Processing Quality Assessment data, and related
computations. The Level 1B subsystem creates parameters for a Level 1B time-
ordered global product (GLAO06) with a geodetically corrected surface elevation using
the same standard algorithm used for ice sheet regions. The Level 2 subsystem deter-
mines region specific (ice sheet, sea ice, land, and ocean regions) elevation parame-
ters for Level 2 time-ordered regional products (GLA12, GLA13, GLA14, and
GLA15).

10.2 Design Approach

The following design criteria are specific to GLAS_Alt
e GLAS_AIt fully uses the standard routines from the model GSAS PGE.

= GLAS_AIlt can perform partial processing. However, since the Elevations sub-
system needs data from GLAO5, it is not possible to create GLA12-15 with only
GLAO06 as an input.

= All products are output at one record per 1 sec. However, GLA12-15 are only
written when the footprint location falls within the respective regional mask.

< ANCO01 meteorological data sets are required at times before and after the time
of the input product data.

10.3 Input and Output Files

Table 10-1 lists the required inputs to GLAS_AIt. Table 10-2 lists the outputs created
by GLAS_Alt. See the GLAS Data Products Specifications Volumes or GLAS Science

October 2002 Page 10-1 Version 3.0

GSAS Detailed Design Document

GLAS_Alt

Data Management Plan for details regarding the these files. Those files which are
only required by specific subsystems are noted within the table..

Table 10-1 GLAS_AIt Inputs

File Spec Type Source Short Description
anc0l*.dat Dynamic Ancillary met_util Meteorological subset files.
Data sets at times before and
after the time of the profile are
interpolated to the time of the
profile.
anc04*.dat Dynamic Ancillary UTexas IERS Polar Motion and Earth

Rotation Data File.

anc07*_0000.dat

Static Ancillary

Science Team

Error file.

anc07*_0001.dat

Static Ancillary

Science Team

Global constants file.

anc07*_0003.dat

Static Ancillary

Science Team

Waveform constants file.
*Waveform only

anc07*_0004.dat

Static Ancillary

Science Team

Elevations constant file.
*Elevation only

anc08*.dat

Dynamic Ancillary

UTexas

Precision Orbit file.

anc09*.dat

Dynamic Ancillary

UTexas

Precision Attitude file.

ancl2* 0000.dat

Static Ancillary

Science Team

Coarse DEM file
*Elevation only.

ancl2* 0001.dat

Static Ancillary

Science Team

Fine DEM file
*Elevation only.

ancl3*.dat Static Ancillary Science Team Geoid file
*Elevation only.
ancl6*.dat Static Ancillary Science Team Load tide coefficients file
*Elevation only.
ancl7*.dat Static Ancillary Science Team Ocean tide coefficients file
*Elevation only.
anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc27*_0000.dat

Static Ancillary

Science Team

Coarse regional mask file.

anc27*_0001.dat

Static Ancillary

Science Team

Fine regional mask file.

anc33*.dat

Dynamic Ancillary

Science Team

UTC time conversion file.

anc45* 0001.dat

Static Ancillary

Science Team

GLAO1 metadata input file.
*Waveform only

anc45*_0005.dat

Static Ancillary

Science Team

GLAO5 metadata input file.

anc45* 0006.dat

Static Ancillary

Science Team

GLAO6 metadata input file.

Version 3.0

Page 10-2

October 2002

GLAS_Alt

GSAS Detailed Design Document

Table 10-1 GLAS_Alt Inputs (Continued)

File Spec

Type

Source

Short Description

anc45* 0012.dat

Static Ancillary

Science Team

GLA12 metadata input file.

anc45*_0013.dat

Static Ancillary

Science Team

GLA13 metadata input file.

anc45* 0014.dat

Static Ancillary

Science Team

GLA14 metadata input file.

anc45* 0015.dat

Static Ancillary

Science Team

GLA15 metadata input file.

Control File

Control

ISIPS Operations

Control file.

gla01* .dat

Level-1A Product

GLAS_L1A

L1A Altimetry product file.
*Waveform only.

gla05* .dat

Level-1B Product

GLAS_Alt

L1B Waveform product file.
*Elevation only

gla06*_.dat

Level-1B Product

GLAS_Alt

L1A Elevation product file.
*Elevation only

Table 10-2 GLAS_AIt Outputs

File Spec

Type

Destination

Short Description

gla05*.dat

L1B Alt Product

Archive/GLAS_Alt

The level 1B waveform parame-
terization product file. Contains
the output from the waveform
characterization procedure and
other parameters required to
calculate surface slope and
relief characteristics.

gla06*.dat

L2 Alt Product

Archive/GLAS_Alt

L1B elevation data product file.
Contains the surface elevation,
surface roughness assuming no
slope, surface slope assuming
no roughness and geodetic and
atmospheric corrections for the
range.

glal2*.dat

L2 Alt Product

Archive

L2 ice sheet altimetry product
file. Contains the ice sheet ele-
vation and elevation distribution
calculated from algorithms fine-
tuned for ice sheet returns.

glal3*.dat

L2 Alt Product

Archive

L2 sea ice altimetry product file.
Contains the sea ice freeboard
and sea ice roughness calcu-
lated from algorithms fine-tuned
for sea ice returns.

October 2002

Page 10-3

Version 3.0

GSAS Detailed Design Document GLAS_Alt

Table 10-2 GLAS_AIt Outputs (Continued)

File Spec Type Destination Short Description

glal4*.dat L2 Alt Product Archive L2 land altimetry product file.
Contains the land elevation and
land elevation distribution calcu-
lated from algorithms fine-tuned
for land returns.

glal5*.dat L2 Alt Product Archive L2 ocean altimetry product file.
Contains ocean elevation and
small-scale roughness calcu-
lated from algorithms fine-tuned
for ocean returns.

gap05*.dat L1B Alt Quality QA L1B waveform parameterization
quality file.

gap06*.dat L2 Alt Quality QA L2 elevation data quality file.

gaplz*.dat L2 Alt Quality QA L2 ice sheet altimetry quality
file.

gapl3*.dat L2 Alt Quality QA L2 sea ice altimetry quality file.

gapl4*.dat L2 Alt Quality QA L2 land altimetry quality file.

gapl5*.dat L2 Alt Quality QA L2 ocean altimetry quality file.

anc06*.dat Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.

10.4 GLAS_Alt

Figure 10-1 shows the top-level structure chart of GLAS_Alt. The basic processing
algorithm is summarized below:

< [Initialize (MainlInit)

= Set the local execution flags (eCntrl_Init)

= Parse the Control File (GetControl)

= Open the specified files (OpenFiles)

= Print the control file (Print_Cntl)

= Read ancillary files (ReadAnc)

= Write version info (Write_LibVer, Write_AncVer)

= Until all data are processed...
- Execute the WF_Manager, based on Control
- Execute the Elev_Manager, based on Control

= Close all files and generate summaries (MainWrap)

Version 3.0 Page 10-4 October 2002

GLAS_Alt

GSAS Detailed Design Document

PGE Core

Routines [

Mainlnit
eCntrl_Init
GetControl
OpenFiles
Print_Cntl

Write_LibVer
ReadANC

GLAS_Alt

Write_AncVer
Write_eCtrl
ReadData

WF_Mgr

104.1 PGE Core Routines

Figure 10-1 GLAS_AIt Structure Chart

>

MainWrap

checkoutput
(PGE core)

Elev_Mgr

PGE core routines are used exactly as defined in the Core PGE Section of this docu-

ment.
= Mainlinit
e eCntrl_Init
= GetControl
= OpenFiles
e Print_Cntl
e Write_LibVer
= ReadANC
= Write_AncVer
= ReadData
e MainWrap

10.5 Waveform Manager (WF_Mgr)

The Atm Manager controls execution of the Waveform subsystem, passes variables
from the input GLAO1 product to the output GLAO5 product, and handles granule
start/stop. The manager controls execution of the waveform science algorithms
based on flags received from GLAS_Alt. The manager is only executed if at least one
of its execution flags is set. Figure 10-2 shows the WF_Mgr structure chart.

October 2002

Page 10-5

Version 3.0

GSAS Detailed Design Document

GLAS_Alt

PGE Core Routines

glaxx_hdr_init
glaxx_hdr_update
com_hdr_update
Write_glaxx_hdr
GLAS_Error

W_CompAssStats

WF_Mgr

W_InitFFQA

W_CompFuFStats

W_INitAQSA Write_WF
W_Assess W_FunctionalFt
Figure 10-2 WF_Mgr Structure Chart
Version 3.0 Page 10-6 October 2002

GLAS_Alt GSAS Detailed Design Document

Figure 10-3 shows a flow chart of WF_Mgr.

(I_noLandCalc, |_noOtherCalc, |_noGeo)

true

———>» GLAO5_hdr_init

|

Y.

| com_hdr_update |
|

Start of
Procedure

] . :

| GLAOS_hdr_update

true

End of Granule 4>| WF_Wrapup |

y
| GLAO05 hdr_update |
Y

{ Write_ GLA05 hdr |

true

———» W_CompAssStats |
2

| W_InitAsQA |

Time Exceeds
QA Interval

(I_noLandCalc, |_noOtherCalc, |_noGeo)
W_Assess

All Bad Frames true

:

W_FunctionalFt

v

| Write_WF |

(I_noLandCalc, |_noOtherCalc)

Figure 10-3 WF Manager Flowchart

October 2002 Page 10-7 Version 3.0

GSAS Detailed Design Document GLAS_Alt

WEF_Mgr is passed arrays of output file control structures and execution flags. It
accesses product and algorithm data directly from the requisite public data struc-
tures. Execution flags are defined in eCntl_mod; file control structures defined in the
fCntl_mod component of the exec_lib, and product/algorithm data within the
GLAO01 and GLAO5 components of the product_lib.

The first thing the manager does is check for an end-of-granule condition within each
defined output file by comparing the nominal time of data (set by ReadData_mod)
with the appropriate stop time within the specific file data structure. If an end-of-
granule condition is detected, wrap-up and final QA routines are called and the
product and QA files are closed. If another granule of the same type has been speci-
fied in the control file, the manager opens the appropriate product and QA files and
loops to verify the stop time of the new granule is greater than the nominal time of
data.

After checking the granule times, processing begins. The manager calls common
library geolocation and DEM routines to compute position and elevation and tide
routines to get tide data.

Next, the manager executes several science algorithms based on its execution flags
and data availability. These algorithms are discussed in the DFD section. Each returns
a flag indicating if the GLAO5 data product should be written. Values which are
passed directly from one product to another are set appropriately.

QA routines are called to process QA information and the WriteWF routine is called
with the appropriate flags to write data to the product file. Before writing a record,
WriteWF verifies that the appropriate output file exists and that the nominal time of
data is greater than the start time specified in file control structure. If the nominal
time is less than the start time, the data record is not written. An appropriate error
message is written to ANCO6 if a record is skipped.

10.6 Elevation Manager (Elev_Mgr)

The Elevation Manager controls execution of the Elevation subsystems, passes vari-
ables from the input GLA05/06 product to the output GLA06 and GLA12-15 prod-
ucts, and handles granule start/stop. The manager controls execution of the elevation
science algorithms based on flags received from GLAS_AIlt. The manager is only exe-
cuted if at least one of its execution flags is set. Figure 10-4 shows the Elev_Mgr struc-
ture chart. Figure 10-5 shows a flow chart of Elev_Mgr.Elev_Mgr is passed arrays of
output file control structures and execution flags. It accesses product and algorithm
data directly from the requisite public data structures. Execution flags are defined in
eCntl_maod; file control structures defined in the fCntl_mod component of the
exec_lib, and product/algorithm data within the GLA05/06 and GLA12-15 compo-
nents of the product_lib.

The first thing the manager does is check for an end-of-granule condition within each
defined output file by comparing the nominal time of data (set by ReadData_mod)
with the appropriate stop time within the specific file data structure. If an end-of-
granule condition is detected, wrap-up and final QA routines are called and the

Version 3.0 Page 10-8 October 2002

GLAS_Alt GSAS Detailed Design Document

PGE Core Routines Elev_Mgr
glaxx_hdr_init GetHist_index
glaxx_hdr_update -
com_hdr_update
Write_glaxx_hdr
GLAS_Error WriteElev
GLAXxxInitQA E_LandParm
C_IntrpPOD E_OceanParm
C_CalcSpot UpdateGLAXXQA
E_CalcOceanTD E_CalcEarthTD E_CalcLoadTD E_CalcTrop
C_GetGeoid C_GetRegions write_100kmQAPO06 write100km_QAP12_15

Figure 10-4 Elev_Mgr Structure Chart

product and QA files are closed. If another granule of the same type has been speci-
fied in the control file, the manager opens the appropriate product and QA files and
loops to verify the stop time of the new granule is greater than the nominal time of
data.

After checking the granule times, processing begins. The manager calls common
library geolocation and DEM routines to compute position and elevation and tide
routines to get tide data.

Next, the manager calls routines to check the surface type of the data and executes
several science algorithms based on its execution flags and data availability. These
algorithms are discussed in the DFD section. Each returns a flag indicating if the
appropriate data product should be written. Values which are passed directly from
one product to another are set appropriately.

QA routines are called to process QA information and the WriteElev routine is called
with the appropriate flags to write data to the product files. Before writing a record,
WriteElev verifies that the appropriate output file exists and that the nominal time of
data is greater than the start time specified in file control structure. If the nominal
time is less than the start time, the data record is not written. An appropriate error
message is written to ANCO6 if a record is skipped.

10.7 PGE/Manager Implementation Details

This section discusses specific aspects of the PGE/Manager implementation which
should be addressed in more detail.

October 2002 Page 10-9 Version 3.0

GSAS Detailed Design Document

GLAS_Alt

Elevation Manager Flowchart

First time

in run?

Loop thru 40

If first valid
Elev?

PAD used in
GLAO05?

_’{No Continue

Set pre geolocate > Convert NS to m & set temp
Flag lat,lon,elev to GLAO5 vals

If InterpPOD or Pre
Geolocate Flag Set ?

Loop thru 40

Figure 10-5 Elev_Mgr Flow Chart

Version 3.0 Page 10-10

October 2002

GLAS_Alt GSAS Detailed Design Document

InterpPOD?

Yes
A 4
InterpPOD

A 4

Geolocate Using
Prelim Range, & set

to temp lat,lon,elev <

p| Loop thru 40

Loop once for first valid
elevation, then for last valid
elevation. This is needed to
Calc 2/sec parameters —No _ get the 2/sec parameters
Yes
—
Yes

Calc Geoid

No Ocean Td
Corr?
Yes

i

Calc Ocean Td

i)
Yes

Figure 10-5 Elev_Mgr Flow Chart (Continued)

October 2002 Page 10-11 Version 3.0

GSAS Detailed Design Document

GLAS_Alt

Calc Earth Tide

Yes

No

l

Continue Loop ?

Yes

Loop thru 40, WF
(intervals of 10)

Yes

Valid Elev

?

Met Cy

A 4

Calc Load Td

Continue Loop ?

No

Yes

No > Loop thru next 9 WF for 1st
Valid Elev

lNo

Set Load Tide Invalid |

Pt Loop thru 40 WFs

A Bad Elev ? No

Figure 10-5 Elev_Mgr Flow Chart (Continued)

Version 3.0

Page 10-12

October 2002

GLAS_Alt

GSAS Detailed Design Document

Set Trop Invalid

Yes

Continue?

Loop thru 40

Calc Met Corr

v

[Identify Regions |

All Regions found or
end of loop?

A region is identified as set if
any of the 40 shots fall in it.

Write 100Km QAP only
for regions requested

Write 100Km QA ?

Write 100km QA

|

Loop thru 40

'

Assign Reg. Sp. Ranges for GLA06

If Std Wf No Sig ?

Interpolate and sum
Interpolate and sum tide & trop corrs valid corrections

Yes

Valid IS
Range?

Set To Invalid:
GLAO06: Thresh Ret,
Sig Beg,Sig End,
SigElev,Roughness,
Slope, #Pks Smooth
wfm,centroid Rng

A 4

Elev |

Set GLAOG Loc,

nvalid

Figure 10-5 Elev_Mgr Flow Chart (Continued)

October 2002 Page 10-13

Version 3.0

GSAS Detailed Design Document

GLAS_Alt

'

Set Spot Loc= GLA05
lat,lon. Elev=invalid

Slope/
Roughness?

Yes

A 4

Calc
Slope/Rough

A 4

Update GLAO6QA

Valid Lat/Lon?

!

Calc Spot Loc

Slope/
Roughness?

Set Slope/Rough
= invalid

Pp<_ Ice Sheet? : No
Yes

Valid IS
Range?

Yes

DEM?

Yes

Set DEM
invalid

Slope/Rough ?

:

No

Set Slope/
Rough invalid

Elev Invalid

Set GLA12 Loc,

Figure 10-5 Elev_Mgr Flow Chart (Continued)

Version 3.0

Page 10-14

October 2002

GLAS_Alt GSAS Detailed Design Document

v \ 4 —~ No
am Invalid Calc DEM Yes
Set DEM
invalid
¢ Yes
GLA12 Slope,Rough=
GLAO6slope,rough Slope/'I;{ough No
Yes
No
Set Slope/
Rough invalid
Yes
¢
Update GLA12QA

N Sea Ice? Sea Ice? \%

Yes Yes

Figure 10-5 Elev_Mgr Flow Chart (Continued)

October 2002 Page 10-15 Version 3.0

GSAS Detailed Design Document

Set Spot Loc= GLA0S
lat,lon. Elev=invalid

Calc Spot Loc

Valid centroid
Range?

Calc Avg Elev

Set Avg Elev Invalid |

Yes
Set Dem Invalid Calc DEM
No

Yes

Valid Lat/Lon?

e

¢Yes

Update GLA13QA

Yes

Figure 10-5 Elev_Mgr Flow Chart (Continued)

DEM? —

GLAS_Alt
. Set GLA13 Loc,
Valid SI Elev Invalid
Range?
Set To Invalid:

GLA13: Thresh Ret,
Rng(Ist peak),Avg
Elev,Sig Beg,Sig

End, Skewness,Std,
Dev Last Pk,Chi Sq,
Roughness,Num Pk
Fit,Centroid Rng

Yes

Set DEM
invalid

Slope/Rough
?

No

Yes

Set Slope/
Rough invalid

Version 3.0

Page 10-16

October 2002

GLAS_Alt

GSAS Detailed Design Document

v

GLA13 Rough=
GLAO06 rough

Set Spot Loc= GLA05
lat,lon. Elev=invalid

Yes

A 4

Set GLA15 Loc,

Elev Invalid

Calc Spot Loc

Calc High, Low Elev

Set Dem
Invalid

Valid Lat/Lon?

Calc DEM

Set Avg Rng
Offset Invalid

Figure 10-5 Elev_Mgr Flow Chart (Continued)

Valid centroid
Range?

Yes

peak),Sig

Num Pks

DEM?

Yes

Set DEM
invalid

\ 4

Set Ocean
Parms Invalid

Calc Avg Rng
Offset

Set To Invalid:
GLA15: Thresh
Ret,Rng(1st

Beg,Sig End,
Skewness,Std.
Dev Last Pk,Chi
Sqg, Roughness,

Fit,centroid Rng

No

October 2002

Page 10-17

Version 3.0

GSAS Detailed Design Document

GLAS_Alt

+ Yes

Update GLA15QA

No

Land?

If Alt WF No Yes

Sig?

Valid Land Rng?

Set Spot Loc= GLA05

lat,lon. Elev=invalid

Set Dem
Invalid

Yes

}

Set GLA14 Loc,
Elev Invalid

Calc Spot Loc

DEM? __No
Yes

Valid Lat/Lon?

Calc DEM

Yes

‘m

Set To
GLA14:

End,sig

ness, St

DEM?

/

Yes

Ret,Rng(All
peaks),Sig Beg,Sig

amp Gaus,area
Gaus,Kurtosis,Skew

Pk,Chi Sq,
Slope,Roughness,
Num Pks Fit,centroi
of peaks

Invalid:
Thresh

ma Gaus,

d. Dev Last

No—

Set DEM
invalid

Set Land Parms Invalid

Figure 10-5 Elev_Mgr Flow Chart (Continued)

Version 3.0

Page 10-18

October 2002

GLAS_Alt GSAS Detailed Design Document
Calc Land Parms
?
Slope/ No]
Roughness? Yes
A 4
ves Set Slope/
v Rough invalid
Calc Slope/Roughness
<
A 4
Update GLA14QA @—
Yes Continue \ 4
w 407
No
A 4
Write Output
Figure 10-5 Elev_Mgr Flow Chart (Continued)
October 2002 Page 10-19 Version 3.0

GSAS Detailed Design Document GLAS_Alt

10.7.1 GLAO5 Requirement

The original concept of GLAS_Alt was to enable the Elev_Mgr to create GLA12-15
directly from GLAOQ6. However, due to data dependencies, GLAO5 input is required
(as well as GLAO06) when creating GLA12-15.

10.8 WF_Subsystem

The Level 1B Waveforms subsystem computes the geolocation, and produces wave-
form-based information required to produce the elevation products (GLAO05_SCF)

10.8.1 DFDs and their Descriptions

The Level 1B Waveforms subsystem is divided into two main processes (W_Assess,
and W_FunctionalFt) which generate waveform-based information required to pro-
duce the elevation products (GLAO5). A control flag (w_ctrl) is passed to processes
W_Assess and W_FunctionalFt indicating whether processing will be land algorithm
only, other-than-land algorithm only, or both, and whether the subprocess W_DetGeo
will be called. In addition to producing waveform-based information, processes
W_Assess and W_FunctionalFt generate QA data for inclusion in the summary infor-
mation product. The following is a description of each of the processes.

10.8.1.1 Assess Waveforms (W_Assess)

.Utilizes the transmitted waveforms (r_wf_trans), received waveforms (r_wf_rec),
compression ratios (i_compression), index of compression change (i_ndxCompChg),
the PAD pointing vector (d_PADpntgVect), the number of gates in each waveform
(i_numGinWF, normally 200 or 544), the number of waveforms in a frame
(i_numWFinFrame, normally 40), the filter used by the spacecraft (d_filterOb), the
UTC time of the first waveform (d_UTC1stPTime), the time increment from
d_UTC1stPTime to each of the 39 other waveforms in the frame (d_dShotTime), the
digitizer time of gate 1 of the transmitted pulse (d_TimeGatelTr), the digitizer time of
the last gate of the received waveform (d_TimeGateLRec), background noise
(d_bgNoise), the standard deviation of the background noise level calculated by the
on board algorithm (d_sDevNsODb - snoise_ob in ATBD), and an array of flags
(I_WFqual - indicates if any of the waveforms are invalid) to perform a general
assessment of the waveforms including: a check for waveform saturation (i_satFlag,
d_pcntSat); defining the noise and the begin and end of signal (d_bg_Noise,
d_sDevNoise, i_ndxBegin, d_minRngOff, i_ndxEnd, d_maxRngOff); characterizing
the transmitted pulse (d_maxTrAmp, d_areaTr, d_centroidTr, d_parmTr, d_skewTr);
computing smoothed waveforms (d_wf_sm, d_maxSmAmp); calculating various
shape characteristics for the received waveform (d_maxRecAmp, d_skew, d_kurt,
d_centroid); calculating the reference range (d_refRng), and range offsets
(d_preRngOff, d_thRtkRngOff); and determining the preliminary latitude, longitude
and elevation (d_latPreUncor, d_longPreUncor, d_elevPreUncor).

d_relTime is the relative time of each gate taking account of the compression infor-
mation. For example, if the original gates were one nanoseconds apart, and there was

Version 3.0 Page 10-20 October 2002

GLAS_Alt GSAS Detailed Design Document

Arcillary d_TimeGatel R
; Parametars -~ Imet-alElrec
4 Fc.in‘T'gsgam m d_UTCA stPTime
_ G_—v:;r d_dShatTime
_ meAn d_bghloizeth
. IET:[TTEFng d_sDevhz0b
! .F' Qve d_nrgRec
|_nekCr d_gain_recy
i_cr
r_wef_rec drgtr
r_wef_trans I_PADflag
we_Ctrl
— e | _Foual
] == W_Azsess 4= d_elevPrelncor
d_relTime
4wt sm d_longPreldncar
d F‘rel%ngO_ff d_latPrelncor
i_szatFlag
d_pontsat 4 Track
d_by_Moize Data
d_sDevioize
d_refRng d_reflctiliunc
d_m:;:ngo o_reflictUncarr
d_mihRngOff d_locTr
d_PreRngOff .
d_sDevFitTr
d_reflctlincorr)
)) i_usePaD
i_nd=Bedin
i ndxEnd |_PODflag
d areaRecvyF |_offiadirFlag
d_maxRectmp |_seaice
o _skew I_iceshest
d_kurt |_ocean
o_centraid |_lamd
o _mac Tr&mp o_parmTr d_PODpastect |_badFrame
d_areaTr o_skewTr i_errseverity

Level 1B Waveforms -W_Assess Module

Figure 10-6 W_Assess

a compression ratio of 2, then the time of gate 1 (r_wf_rec[1]) would be the average of
the times of the first two digitizer gates ((0+1)/2 or 0.5).

d_wf_sm is the smoothed waveform, and d_maxSmAmp is the maximum amplitude
of the smoothed waveform.

i_sat_flag indicates whether waveform signal saturation is minimal (normal wave-
form processing is applied), moderate (some information on elevation can be approx-
imated) or excessive (no waveform processing is applied).

d_pcntSat is the percent saturation for each waveform.

d_bg_Noise is either the observed noise (d_bgNoiseOb), or the calculated back-
ground noise, and d_sDevNoise is either the observed noise standard deviation

October 2002 Page 10-21 Version 3.0

GSAS Detailed Design Document GLAS_Alt

(d_sDevNsODb), or the standard deviation of the calculated noise. The calculation is
performed if anc07%i_nsCal is set, or if the observed noise is zero or invalid and the
waveform is not invalid.

d_refRng is the reference range in nanoseconds (the time from the centroid of the
transmitted pulse to the time of last gate of the received waveform).

d_maxRngOff is the offset to be added to d_refRng to give the time of the last thresh-
old crossing (farthest from the spacecraft).

d_minRngOff is the offset to be added to d_refRng to give the time of the first thresh-
old crossing (closest to the spacecraft).

d_preRngOff is the offset to be added to d_refRng to give the time of the preliminary
uncorrected range (threshold farthest from spacecraft).

d_thRtkRngOff is the offset to be added to d_refRng to give the time of the retracker
threshold.

i_ndxBegin and i_ndxEnd are the indices of the beginning and end of signal of the
received waveform.

d_areaRecWF is the area under the received waveform, above the noise, from signal
begin through signal end.

d_maxRecAmp is the maximum amplitude of the received waveform.

d_skew is the skewness of the received waveform from signal begin through signal
end.

d_kurt is the kurtosis of the received waveform from signal begin through signal end.

d_centroid is the centroid of the received waveform from signal begin through signal
end.

d_maxTrAmp is the maximum amplitude of the transmitted pulse.
d_areaTr is the area under the transmitted pulse (all 32 gates).
d_centroidTr is the centroid of the transmitted pulse (all 32 gates).

d_parmTr is the gaussian amplitude, peak location relative to gate one of the trans-
mitted pulse, and gaussian sigma of the single peak gaussian fit to the transmitted
pulse.

d_skewTr is the skewness of the transmitted pulse.

d_latPreUncor, d_longPreUncor, and d_elevPreUncor are the preliminary, uncor-
rected latitude, longitude, and elevation.

I_land, |_ocean, |_icesheet, and |_seaice are flags taken from the region mask indicat-
ing the possible presence of land, ocean, icesheet and/or seaice for each waveform.

|_offNadirFlag indicates if the spacecraft is pointed off nadir.

|I_PODflag indicates the status of the orbit information.

Version 3.0 Page 10-22 October 2002

GLAS_Alt GSAS Detailed Design Document

I_WFqual is an array of 31 flags for each waveform. These flags include: no signal, no
leading edge, no trailing edge, no transmitted pulse, land, ocean, icesheet, seaice, no
fit, noise and standard deviation of noise are calculated, maximum iterations during
fit, region selected for waveform fit, and invalid waveform.

d_PODposVect is the precision orbit position vector.
|I_badFrame indicates if the entire frame is bad.

i_errSeverity indicates the maximum severity of any error occurring during the exe-
cution of W_Assess.

October 2002 Page 10-23 Version 3.0

GSAS Detailed Design Document GLAS_Alt

10.8.1.2 W_Assess Subprocesses

Amind 1T aryp
| s i empe_ g P r el i
|_Cempnis sm-'/./ “‘xh J/
t "a4an3a
"1.1410 Ancidlisry
PFarmsmstarn T '\l'i"l'_'l.lﬂ'll
WSO s | W cpanl
W CaRciRsT
I| 141 5'
- - sl
WY _Chdr Triuilss
] hh:'m
o_redTime
Tl
d_parmilr |_err Severty d_Fearmn O e
d_pertrowdtr o_nreaTr I _PudelCamplhg d_sDevhcise
i_TisweTindnd Tr d_shorweTe o "-'T' | _E AT & e — 4'..-"" o reghen
d_mrr d e ol r vl g " yaqE f—- d regfr
| Wt sl Amuillacy d_refTme

i_redeBieyprs
i_redeFind

m o_Prefmgplet d_wf_grm

r| " o T Sy e |V gt
W kR
1’\\ & o

Assess Waveforms Sub-Processes, Part A

Figure 10-7 Assess Waveform Sub-Processes

Version 3.0 Page 10-24 October 2002

GLAS_Alt

GSAS Detailed Design Document

d_centroidTr
d_PreRngoff
d_timeGateTr

d_PAaDpntgvect
|_PADflag

i_nd=0fCompChg
i_compression d_hiaz

o relTi o_nrgTr
—Eime d_nrgRec

r_wf_rec . ;
d_UTC AP Time 1_\WWFoual . : i i_ndxBegin
. W 114158 i nexEnd
d_dShotTime 1416
W CaloCivxir s
d_refRng d_PoDposyect
Wy_DetGeo d_elevPrelncor
d_longPrelncor
d_lstPrelncor
i_errLoc i_usePaD o _cenitroicd o_kurt
i_ertPOD |_ofikladirFlag d_maxRecimp o_skew
I_PODlag o_areaRecWF
d_maxRecimp
1_WWFgual
il rec d_nrgRec
i_nckxBegin
i_nd=End
Ancillary
Paramelkers
d_portSat i_satFlag
Assess Waveforms Sub-Processes, PartB
Figure 10-7 Assess Waveform Sub-Processes (Continued)
October 2002 Page 10-25 Version 3.0

GSAS Detailed Design Document GLAS_Alt

d_latPrelncor d_longPrelJncaor

d_nrgRec g retRng

d_nrgTr d_PreRngOff

d_relTime d_by_Moise *1.1.4110
r_wf_rec
- *1419 _¥uFrual
C_GetRegions
W_CalcThRetrkr
i_err_region |_seaice
d_rgRes g refRng _Jand |_iceshest
B |_ocean
d_refletUncorr d_nrgTr d_PreRngOfi _

d_nrgRecall |_WFouial

1411

Ancillary

W_CalcReflct
Paramelers -

d_reflctUncorr d_reflctallnc

Assess Waveforms Sub-Processes, Part C
Figure 10-7 Assess Waveform Sub-Processes (Continued)

10.8.1.3 Calculate the WF Functional Fit (W_FunctionalFt)

.Utilizes the waveform (r_wf_rec), the smoothed waveform (d_wf_sm), time
(d_relTime), time array indices for the begin & end of signal (iNdxBegin & iINdXEnd),
the background noise (d_bg_Noise), the standard deviation of the background noise
(d_sDevNoise), the centroid of the received waveform (d_centroid), and the region
type(s) (I_land, |_ocean, |_icesheet, and |_seaice) to fit the waveform to a function and
return the calculated waveform function parameters (d_parm), the estimated param-
eters (d_estParms), the initial number of peaks found (i_nPeaklnit), the number of
solution peaks found (i_nPeaks), the ranks of the peaks (i_rank), the solution sigmas
(d_solnSigmas), the standard deviation of the fit (d_wfFitSDev), a flag indicating if
the fit was unsuccessful - i.e. if the normal matrix turns singular (l_fitNogo), and a
flag indicating if the fit ended without meeting the convergence criteria
(I_fit_maxiter).

Version 3.0 Page 10-26 October 2002

GLAS_Alt

GSAS Detailed Design Document

d_wi_sm d_relTime
r_wef_rec iMd=Begin
w_ctrl iMck<End
d_elevPrelncar o _bg_Moize
d_longPreldncar d_sDevMoize
d_latPrelncor |_land
|_ocean
d_UTCtime
|_icesheet
i_numGinE .
|_seaice
i_numiFinFrame 11.42*)
o_centroid
Ancillary Wi_FunctionalFt
Paramakars | W qual
o Summary
Data
I_fit_maxiter
i_nPeakinit |_fithloga
i_errseverity d_wiFitSDey
d_estParms d_soinSigmas
d_parm
i nPeaks 1Fank
Level 1B Waveforms - W_FunctionalFt Module
Figure 10-8 W_FunctionalFt
October 2002 Page 10-27 Version 3.0

GSAS Detailed Design Document GLAS_Alt

10.8.1.4 W_FunctionalFt Subprocesses

i ndxEng 4Pd_Moise
i nobBeci d_zDevMoize
i_nclxBegin | land
d_relTime |_ocean
d_wf_=m |_iceshest
r_wwf_rec |_seaice
I_wWFgual #1420t i_maxiter
d_sigmatdinit d_nPeak_min
d_centraid i_maxfit
W ParamiyvithFit
i_errSeverity d_params
i_nPeakini I_nPeaks
d_estParams i_peakRank
|_fit_maxiter d_solnSigmas

I_fitMogo d_wiFitsDey

W _FunctionalFt Processes

Figure 10-9 W_FunctionalFt Subprocesses

Version 3.0 Page 10-28 October 2002

GLAS_Alt

GSAS Detailed Design Document

r_wl_péc

ey ¢ @ el
_manbues | ek aFhawigiry
[, PR]
4431 redEnd
IWPousl =
d_Biss = W_CacArea

d_eeaFfl el SF

F_W_red

i_Fusslymig o, rollimn

d_heaz

T i_FuiBiegi
I_FudaErd
| A
— B | o cpual
41732 _
W CaloCen

[=]

W_CharTrPulse Processes

Figure 10-9 W_FunctionalFt Subprocesses (Continued)

October 2002

Page 10-29

Version 3.0

GSAS Detailed Design Document

GLAS_Alt

r_wef_rec

i_nd=OfCompCho
i_compression

d_relTime

i ittyicith

4151

W_Smooth

d_wef_zm

W_SmoothPreRC Processes

Figure 10-9 W_FunctionalFt Subprocesses (Continued)

Version 3.0 Page 10-30

October 2002

GLAS_Alt GSAS Detailed Design Document
d_UTCzpotTime
d_PADpntgect
* 4161 o_PioDposhyect d_preRnglncor
d_UTCzpotTime I_PaDflag
C_InterpP oD i_dlim i_PODtype
4162
Z_CalcSpLloc
|_PODflag i_errPOD
d_PoDposiect
i_errLoc
d_scheight
_ d_elevPrelncar
|_offMadirFlag &_longPralncor
|_offMadirFlag d_latPrelncor
W DetGeo Processes
Figure 10-9 W_FunctionalFt Subprocesses (Continued)
October 2002 Page 10-31 Version 3.0

GSAS Detailed Design Document GLAS_Alt

r_wef_rec
i_numcurves
i_maxCurves

d_relTime
i_nd=Begin

i_maxSamples i_nck<End r_wef_rec

41861 o_relTime

W Faual I_NUmiCures

i_ndxBegin
i_ndxEnd
1_vFqual

d_hias W CaloArea i_maxCurves

i_maxZamples

41582 d_hias
d_relTime
d_areaRecF W CalcCent . .
r_wef i_noxBegin
i_numCurves i moxEnd
i_mE=Curves d centroid
i_maxSamples

4183

d_centraid

W CalcESkewkurt

d_kurt

W_CalcCtMxArAs Processes

Figure 10-9 W_FunctionalFt Subprocesses (Continued)

Version 3.0 Page 10-32 October 2002

GLAS_Alt

GSAS Detailed Design Document

Iﬁm
'-"m amum.-

o maniarey
i_niPeakE o estShpmas

i_red =Bl o_ksy_Hesise
-:I_rﬂlmu Puul s Begn o _sDerviicins
d_twf_gm -’. _u-:“ d ke o ™ __.-"I e
|_¥eF gl 043300 L, — o_piFeak_min
r_well_roms: 422 -
|V qusl —
W Femrasmme _ Ancilla
Aol s W _PeriormhE I'-r.—lh:
i rHH
i_rPaniEae |'|_ - 1Pk Rl i_rar Seeraily
_mniniPanms I_Al_rfvdceibar
=i I _TEMo
d_wiFiSDey
. | _riPreaka
L t |_mmsPeaks
I ¥Fipual i arms
14223 -
V_Prana s ek
i_ipesak e
W_ParamWithFit Processes
Figure 10-9 W_FunctionalFt Subprocesses (Continued)
October 2002 Page 10-33 Version 3.0

GSAS Detailed Design Document GLAS_Alt

i_mcd=End Ancillary

i_ncdxBegin Paramaters

d_relTime i_ndxBegin d_minAmp
d wef =m i_ncdxEnd o_relTime d sDevhloise
d_wwi_sm B

I_WWFoual d_nPeak_min

M22141 d_wi2nodDer . .

i_maxfit

|_\WFqual M2
d_sigmatdinit

W Calc2ndDer

d_wef2ncDer

W Estimates

i_nPeakinit

i nPeakEst o_estiigmas

d_estParms

W_EstParams Processes

Figure 10-9 W_FunctionalFt Subprocesses (Continued)

Version 3.0

Page 10-34

October 2002

GLAS_Alt GSAS Detailed Design Document
d_weeighits
iMck:End d_estParms
iMclxBegin d_e=tSigmas
d_relTime dmin&mp
r_wef
iPeaks i maxiter
. i_miniter
I_hinowt o_dCany
d_=igmahdinit

o_intw_tmin

d_szolnParms
d_solnSigmas

i_rmThesePeaks Ancillary
Paramelters

i_clim

2222

i_pe

I_=ingularhd W_CombinePeaks
| numiters d_wiFitShey
- _ |_fitHoga d_t
i_grr=everity i_rmThesePesks
I_fit_maxiter
W_PerformFit Processes
Figure 10-9 W_FunctionalFt Subprocesses (Continued)

October 2002 Page 10-35 Version 3.0

GSAS Detailed Design Document GLAS_Alt

10.8.2 Structure Charts

WEMgr_mod.f90

WFMgr
GLAS Error NF_Wrapup sonst_wf_print wf_globals _print
{W_CompAsstats ;W_CompFuFStats i W_Init_FFQA W_INnitASQA
GLAO5_hdr_init som_hdr _update GLAO5_hdr_update Write GLAO5_hdr ilvf_ControlJorint
:W_CompAsstats ;|| i w_InitASQA [in_Assess i]| i w_FunctiondFt Write WF
Figure 10-10 WFMgr Structure Chart
W_Assess mod.f90
W_Assess . W_InitASQA
| | | | i | W_GeAQAStats
GLAS Error W_CalcRelTime W_CharTrPulse W _CalcNoise i I
| i wf_QAtrack print
W_CalcCent W CalcArea W_Caleskewkurt [[i w_Lsgrit i
| [|
W_CalcRefRng W_SmoothPreRC W_DetGeo C_GetRegions
I
W_Smooth1l ‘
C IntroPOD \ C CalcSploc
W CalcCtMxArAs W Ck4Sat W CalcThRetrkr W CalcRefla
]
| | GLAS Error
W_CalcCent W CalcArea W_CalcSkewKurt

Figure 10-11 W_Assess Structure Chart

Version 3.0 Page 10-36 October 2002

GLAS_Alt GSAS Detailed Design Document

W_FunctionalFt mod.f90

W_Functional Ft W_InitFFQA

W_GetFfQAStats

| | [l |

GLAS_Error " W_ParamWithFit {W_GetHstNdxD ?W_GetHstNDxI ~f_QA_summary_print
W_EstParams W_PerformFit N_RankAllPesks || i N_GetHstNDxI
N_Rank Peaks
W_Calc2nd Der W_Estimates | |
W_LsgFit || ~_CombinePeaks || w_GetHsnDxl :

W_CombinePes " W_Reduce Peaks " W_RankPeaks " W_CombinePeaks " GLAS Error ||;W_GetHstNDxI

N_CleanPexk s

Figure 10-12 W_FunctionalFt Structure Chart

10.9 Elev_Subsystem

The Levels 1B and 2 Elevation Computation subsystem generates all elevation Stan-
dard Data Products, associated Processing Quality Assessment data, and related
computations. The Level 1B subsystem creates parameters for a Level 1B time-
ordered global product (GLA06_SCF) with a geodetically corrected standard eleva-
tion. The Level 2 subsystem determines region specific (ice sheet, sea ice, land, and
ocean regions) elevation parameters for Level 2 time-ordered regional products
(GLA12_SCF, GLA13_SCF, GLA14_SCF, and GLAS15_SCF).

10.9.1 L1B DFDs and their Descriptions

Below is a breakdown of each of the elevation processes into subprocesses. Each sub-
process corresponds to a Fortran 90 subroutine that is called by the elevation man-
ager

10.9.1.1 Interpolate POD (C_IntrpPOD)

Utilizes the POD file (ANCO08), and time to interpolate the precision vectors for use in
geolocation.

October 2002 Page 10-37 Version 3.0

GSAS Detailed Design Document GLAS_Alt
eimitial
chaud_baund luger LIE_Elew_pema ol PAD weck 13 Phee cumm
x‘xl - " i o
v i " —— oot pange . Regtipes _Hegine .I' f_a' —
ﬂ'x - II lIII .-’u ety o . II| 'III ff &)
&loud ||:||I dagth ""\.\, -_ Il |' " :L III __.-" .-___."'
qu d r refaliim ek
mal, iials h‘*\\\ .'_L *_ ' o # o —t «“'I & OLA AMT]
—_—
LA ANCEL _ T e .u’ signa_gusssiun 53 P
- l}" l.".nr_. wlnls \r — -" Cabsalata Laval -
| Lewel 1E r*- wr imn widih |: ¥ el urd l rel_pange
wan ..-.! Bl watican |' =y L EFI:.'I!I.HI: . II!‘__ !
—_— ' HICALOT BNE -
ULA ARG = w, Fudt “;ﬁ-"‘xﬁ % elevglions "rl T S
b .-"?!r II-F-L H‘HrJIJ:uJ: wudt III S .r-"h_- .\"\.x Bl _eome
LA ANC r-'"ll i ‘-1. . LIbEean f .". H ‘Hh Foa piceacke
/ ."I Y 1" LiufleroA %, GLAAHCH
_.-"I] 1 i Litaca % -
prd_bagh rd ll,-"' II. I|I \'HI'.M.ILI '?r §3 % lop_rae
_l.-"' F III I oLa ARSI | (:11!-”. N ed com gpat bas
#ld_apeed loe .r'l ! s | :-r:zl:uu
l."Il wal_siery I",_l Auwtigtice .-_l"
! e _caedfs i
grsid pnd
__'Ir__ G ARCLELT -Il
GLA ANG 15 Bl b [
r
Rlewiph,
Figure 10-13 Level 1B and 2 Elevation DFD
10.9.1.2 Tide Correction Routines (E_CalcLoadTD, E_CalcOceanTD,

E_CalcEarthTD)

The tide correction routines consists of three processes which calculate the elevation
corrections due to the effects of the load tide, ocean tide, and earth tide. Each process
is triggered by a control flag. Following is a brief description of each of the process:

10.9.1.2.1

Utilizes the load tide coefficients file to compute the coefficients for the given spot
location. Then calculates the load tide correction using the given time.

10.9.1.2.2

Utilizes the ocean tide coefficients file to compute the coefficients for the given spot
location. Then calculates the ocean tide correction using the given time (time).

10.9.1.2.3 Compute Earth Tide Correction (E_calcEarthTd)

Utilizes the earth tide coefficients file to compute the coefficients for the given spot
location. Then calculates the earth tide correction using the given time.

Compute Load Tide Correction (E_calcLoadTd)

Compute Ocean Tide Correction (E_calcOceanTd)

Version 3.0 Page 10-38 October 2002

GLAS_Alt GSAS Detailed Design Document

ol Erul i g,r-.:l!_ll[l
LA AT O ke _enei®i & _;_:_r Slj- e _Ir'. cantard
juin] canirad ."\\ -'I .l-__.-".. . eimital &
! #d_spol_lor * —F ! '
— 1d_sp S ™y {._ . __d__q__'!' - - mit_datn
", o - ", L 3 - 4 ")
lrr" Y ""l& 2% 5 Intepalus 8 ;oo A f‘ﬁ e AT
lr2arpalats - Teds | gecads J o Calogae -
) oD] ' q Crmestinn | ".,. | Taopoiphese |
| Rirutmee y :l' LT nE .':
, i - N i Iy A
jy S 4 il S s —__” . oef_range
s *‘ & ! ,l:" A PAD et
-: . |'.l:d_||d:_l\.-\.=“.l" T o
b sarth tids com —— - T
B _weel 1 comtzal oreen_lide_cos geoid_h .__.-" 515 'HH:-__..-"" ____.J-'[":'E' TR
B B i l"d.-.-'llrl 'i.r- ':__ R
LIRQA _wime Blew & Spet visan
I___-—'_‘—-. . L~ rasl=ry
TV
/' Comelie W Pl ‘$" T
- e, - -, = e ldd Soa
l Craakly :'.r|_:||||_1:||:|’!_|:-:‘:- " —m " '\-\,.__H -, I_
Slebrcs - ! warth tids sler
- itd o dad alaw H“-'I-.-:d_udr_-:l-:v
A T,
b .t T
LIHEI01A e -_,-’-' 56 T
T B L
L "\.__' ! Intsmpolals
oughness o, J Cacuose Y (1,21 R TR —
ilipe w 1E ™, |: Al Chiskinyg }| _L. _
1-\...\._ IIII" Caleubate -"|| \ Flag \ &--_ . dEm mask
) Surface A et o e d
T R h] = | -u'xl ; -, e B EM_gm
gt Fougicmis R, S v S com_] elev
/ L Y N,

it _pnds_widdh " _‘ﬁ A " ™ sid_porr_spot_lo

e ; '|I * alm_quaitiy_fleg
ree_gmp_wlth 7 i | claud_opt_degth, dem_sler

wf : 3
fgRl_gesshan contped cloud Yol e

Figure 10-14 Level 1B Elevation Computation DFD

10.9.1.3 Interpolate Geoids (C_GetGeoid)

Utilizes the spot location to interpolate for the geoid height at that location. Thisis a
common routine used by several processes.

10.9.1.4 Calculate Troposphere Corrections (E_CalcTrop)

Utilizes the met data files, spot location, and elevation (with respect to the geoid), to
interpolate spatially for parameters used in the calculation of the tropospheric correc-
tions. These corrections are then temporally interpolated to get the tropospheric cor-
rections for the given time.

10.9.1.5 Calculate Std surface Elevation and spot loc (C_ CalcSploc)

Utilizes the results from the previous three processes along with the spacecraft posi-
tion in ITRF (Inertial Terrestrial Reference Frame), the laser attitude in ITRF, refer-
ence range, and ice sheet range offset to calculate surface independent elevation and
spot location.

10.9.1.6 Interpolate DEM (E_CalcDEM)

Utilizes the spot location, the Global DEM file, and the DEM mask file to determine
the DEM elevation for the specified spot.

October 2002 Page 10-39 Version 3.0

GSAS Detailed Design Document GLAS_Alt

neean_lds_eor

loed_tide_com
‘: :* eordned
1 :
"\-\. II
*, I|'
conzal . ™, e —,]
a W 13 ._"\ I,-' TErIRY | o Flad_gpol_loc
- 7 5 - -
B Compuls \'. | Compae e
s 4{2 Lioad Tade | |: Clepen Tuls | [t e
a— Elev Elew e
s - | / \ S
std_spod o - S - -, A =
-7 - Tm— R neean_tde_eneffs
'.--l-!_l;lL’_-'l:i'".:
5123
"r. Compids \lll
2o ...]I Eantk Tids
| Flew |
- /
o = ..f'l-\..______.-"i\
il _lede coelfa - . . x
ool ; wirth_teds e

Fd_spol_foe
Figure 10-15 Tide Corrections Routines DFD

10.9.1.7 Calculate Quality Flag (E_AtmQF)

Utilizes the cloud optical depth and cloud boundary layer height to ascertain the
effect of atmospheric problems that would decrease quality of the elevation product.
This quality is returned as a flag.

10.9.1.8 Calculate Slope & Roughness (E_CalcSlope)

Utilizes the sigma of the gaussian waveform, transmitted pulse width, and receiver
impulse width to calculate the slope and roughness.

10.9.1.9 Create L1B Quality Statistics (update_ GLAO6QA)

Combines QA data from the previous six processes to create QA statistics for the
Level 1B Elevation Computation subsystem

10.9.2 Create L1B Quality Statistics

Combines QA data from the previous six processes to create QA statistics for the
Level 1B Elevation Computation subsystem

10.9.3 L2 DFDs and their Descriptions

Below is a breakdown of each of the elevation processes into subprocesses. Each sub-
process corresponds to a Fortran 90 subroutine that is called by the elevation man-
ager

Version 3.0 Page 10-40 October 2002

GLAS_Alt GSAS Detailed Design Document

control MO0 wect FALD west

e 1",' f aabaless malsx
. ‘.-'"' s21 i f s
Check) Y ,|I ' L
i '} 1 _I o
P oo mrkin F'II Hegin _:!_ t__ _"'- -
II .'I -~] H"‘b .-"'-.
.lll-\. I i "-.:.' — bop_éda
N '___,.-"' ; Determine - -
I P — -II Regicn Spee \ -
feel_lag 1 -— _— || Elivasisn and
Il'll Reglpec_elew Y Spat Lesation _IJI‘_.
T, # S,
\ A
o i -
ceen lypes Reglnee wpol. o R @il _tange
LIk wgra
/
{
I.' Regipec_Params N
| - - ",
! LS, R & N
E Regdpes_ipol_loe -\._;I_. Gl Beponiel \‘l,
- F . 1
_— g_h - ¢ Fagipec_elev | Parums
l---l_.-". e .--"-‘- __."'- -~ - L] _.:'II
bt e 5 L
ST S dem i KH y
Elevgiszag :I - e ".-'“F,-' B - - _
|I A a4 _l!‘r"
J .
h J { inkepolale
b A | LEM b——————— dem_mask
— \ L
Fy =
M _,--"" " contral Regpec_Yars

Figure 10-16 Calculate Level2 Elevations DFD

10.9.3.1 Check Region (C_GetRegions)

Utilizes the region masks file and spot location to determine the valid regions for the
spot location.

10.9.3.2 Determine Region Spec Elevation and Spot Location (C_CalcSploc)

Utilizes the region specific range (land, sea ice, icesheet, or ocean), POD position vec-
tor, PAD vectors, tide corrections, and tropospheric corrections to calculate the region
specific elevation and spot location.

10.9.3.3 Calc Reg Params (E_OceanParm, E_LandParm)

Calculates the region specific parameters that have not already been determined ear-
lier by the other routines.

10.9.3.4 Interpolate DEM (E_CalcDEM)

Utilizes the region specific spot locations, the Global DEM file, and the DEM mask
file to determine the DEM elevation for the specified spot.

October 2002 Page 10-41 Version 3.0

GSAS Detailed Design Document GLAS_Alt

10.9.3.5 Create L2 Elevations QA (update_ GLA12QA, update_ GLA13QA,
update_ GLA14QA, update_ GLA15QA)

Combines QA data from the processes 5.2.2, 5.2.3, and 5.2.4 to create QA statistics for
the Level 2 Elevation Computation subsystem.

10.9.3.6 Create Elevation QA Statistics (wrapUpQAPO06, wrapUpQAP12 15)

Wraps up and writes to file the QA Statistics for the Level 1B and 2 Elevation Compu-
tation subsystems. WrapUpQAPO06 will handle the Level 1B subsystem, while
wrapUPQAP12_15 will handle the Level 2 subsystem.

10.9.4 Structure Charts

ELswid gy
1141 -e'.e'r_'rup_:la-.a
==, s — ':.Jb r‘h-_mrl:r._utnﬂ
—— T e ".-" | ——

|II I| Elesvalairs Bl g
read_slev_sne - "':-_ ,-"'r Ilf 'l E Wham. i
11 4w - P 'r:_‘___l.n.r. = _dala 1A
()

I'. L.En'[n;.r -1

I.-"
.-"' L1 BEY ERilgail rJ'n 1
T{ j:.,ﬁ'ﬂr.::my":a- ,||I 'ﬁ "x-:frq e
W @) j‘ 21 E Vg, E¥t_oo
= {1-5} __.-f g Fotl_out
- @ @ e,

Figure 10-17 Elevation Manager

Version 3.0 Page 10-42 October 2002

GLAS_Alt GSAS Detailed Design Document

load tide corr o T

oceat tide cotr
L error
8 WetData T1

eatth tide corr
- er time @2~ 0y MetData T2

LIE st tide gooid_grid
std_spot_lac A & & 4 % std_spot_loc
time O LIB_ctel_geo PO BB roid hgta™S Gy LIB ot tro
P attor ¥ f’ std_spot loc sutf eleva *
Tide Cotrection
Foutines E_GetGeoid E _CalcTrop

1163 1145

load tide QA g
earth tide Q4 “a

oceaty tide O Qg ? trop_corr 1A

L1B_eted PODint L1B et elevspot

POD_pu:us_vect{}?f ft:i.me

std_corr_spot_loc PAD pointing wvect

Sy

n:nﬁ'_nadir_angli{}

errn:nr-if

Di’f'_nadir_ﬂzm

C IntrpPOD C CaleBploc
1164 1.1.6.7

Figure 10-17 Elevation Manager (Continued)

October 2002 Page 10-43 Version 3.0

GSAS Detailed Design Document GLAS_Alt

@

3 dem_finfo
dem_hit g

3 std corr_spot_loc
on_land flz g

EI’I’DI"

E GetDem
1168

$ dem_mask

cloud_botmd_Lawer

=)
cloud opl deplly ¥ '? LIE etd CJA

o]
LB ed flg o va,_yew_wl

eld_paf_sber_Q4

trop_cor_ QA

f :uui;lnl.rnl}:-' ._-D'lﬂ o

. clopt wim_qaal_Bag A
y

d;ﬂ:rid-_h s

E_CaleSlops
1.16.00)

E_Atn(F
L1a%

_— ——

—_—
—_— —

wim_qual_flag 04 ™ - —

—_—

E CrealaL1B0A
11412

Figure 10-17 Elevation Manager (Continued)

Version 3.0 Page 10-44 October 2002

GLAS_Alt GSAS Detailed Design Document

=T
e

E Chekfieg
11614
L3_sted_slevepat

POIL} pis weel «*

E_ CuiPegPem
1.0 1

ol mada g
Eirlg&ptr_qmt_ln:

EnA e
Z_ CalcBplos ¢ -

1141

e —

—_—

Hrﬁ{pldllml.u.ﬂﬂ:‘_ - —

Mupe: The Mrefix Reg Spec denetes region specific, iz, land, ocean,
breshesr, and sendee.

E_Crentel 3004
F1ALE

Figure 10-18 Calculate Level 2 Elevations Structure Chart

October 2002 Page 10-45 Version 3.0

GSAS Detailed Design Document GLAS_Alt

Tude Crrmrerison
Rol=ira
114351
7
LIB ctel losdTide
o~
ld gpol lac .l"'H Tene
ll-l}.-'f-f 'i: K. wigth tsde (&
Tems 0 tide_coedfs 1] =" Ve
.l-.l'
lj:'-f’{ T P, #th_lede_tom

lowdtide_finfa - LID_cul_ccsanTide

o t ,\\

-~

-~ -
m-:n.-:a___.-"' vid_spot_loc LR O o
lnmd wds com l’-,.r" T 3
f__ * std_spot_loc
Tosd_tide '1-'-.;{,./‘ teot HQ,
v 3 LIE el eesibiTode
--___.--"'r actan Rids éfm \‘H
My
' L L |

E_CalclosdTd E_CalcleanTd E_CalcEanhld
I1633 L1133 | 1634

Figure 10-19 Tide Correction Routines Structure Chart

E_GetGeoid
11641

eoid grid
T gevid_gx

d 1
genid_hgt’ﬂf‘ (3 std_spot_loc

¥
E IntrpGeoid
11642

Figure 10-20 GetGeoid Structure Chart

Version 3.0 Page 10-46 October 2002

GLAS_Alt GSAS Detailed Design Document

E CaleTrog
L1651
-
Pz
Frepal H-l::-"' ""J'f p“‘ll!d-l e
ald apal boc *'Ih“unz":f el presl
grenid_ngt gt "I'.I""'“"‘!J n:rr , pually ?l‘ld_l’pu!_b:lc
= - [#]
&£ MuData_TI -7 pwatt¥ | suef_peeaz "% trop_cont
"R Gllaas T L kop_cond
"'H’ - ‘F h_ﬂ':ll.d. apil loc t?:l"ﬂ_‘pnlﬂ
E_ConwJesHt E_CaleBuefPy E_CaleW_dTrop E_Tmplntp
REES] 108353 p143 118354
Figure 10-21 Calculate Trop Corrections Structure Chart
October 2002 Page 10-47 Version 3.0

GSAS Detailed Design Document GLAS_Alt

Version 3.0 Page 10-48 October 2002

Section 11

GLAS_Atm

11.1 Overview

GLAS_Atm is a core GSAS PGE. It uses the Atmosphere subsystem to create GLAS
Level 1B and 2 data from the Level 1 GLAS atmosphere data products. GLAS_Atm
will read the GLAO2 file created by GLAS_L1A and the ANC36 file created by
Atm_Anc to create the GLAO07-11 products.

11.2 Function

The function of the Levels 1B and 2 Atmosphere Computations subsystem is to create
atmosphere parameters for the standard data products GLAOQ7-11 and to generate
associated metadata and quality assessment (QA) data.

11.3 Design Approach

The following design criteria are specific to GLAS_Atm
e GLAS_Atm fully uses the standard routines from the model GSAS PGE.

= GLAS_Atm can perform partial processing. However, due to the 20 second
buffering, the Level 2 data is always processed together even under reprocess-
ing scenarios. Data products GLAO08-11 are always created together.

= The Level 1B product (GLAQ7) is output at one record per 1 sec.

= The processing of Level 2 data is buffered for 20 seconds irrespective of time
gaps between data records.

= The Level 2 products (GLAO08-11) are output at one record per 4 seconds.

= Cloud products are reported at once per 4 seconds, 1 second, and 5 Hz from 21
to 0 km, and at 40 Hz below 4 km.

= Aerosol products are reported at once per 4 seconds from 21 to 0 km and at
once per 20 sec from 41 to 21 km.

= Twenty second averaging requires that at least ten seconds of valid profiles are
available. Likewise, four second averaging requires that at least two seconds
of valid profiles are available.

< Met data sets at times before and after the time of the profile are interpolated
to the time of the profile. If either of the met data sets are missing, then the
available met data set is used without interpolation. If no met data sets are
available, then standard atmosphere data are used instead

October 2002 Page 11-1 Version 3.0

GSAS Detailed Design Document

GLAS_Atm

11.4 Input and Output Files

Table 11-1 lists the required inputs to GLAS_Atm. Table 11-2 lists the outputs created
by GLAS_Atm. See the GLAS Data Products Specifications Volumes or GLAS Science
Data Management Plan for details regarding the these files..

Table 11-1 GLAS_Atm Inputs

File Spec

Type

Source

Short Description

anc01*.dat

Dynamic Ancillary

met_util

Meteorological subset files.
Data sets at times before and
after the time of the profile are
interpolated to the time of the
profile. If either of the ANCO1
data sets are missing, then the
available ANCO1 data set is
used without interpolation. If no
ANCO1 data sets are available,
then standard atmosphere data
are used instead.

anc04*.dat

Dynamic Ancillary

UTexas

IERS Polar Motion and Earth
Rotation Data File.

anc07*_0000.dat

Static Ancillary

Science Team

Error file.

anc07*_0001.dat

Static Ancillary

Science Team

Global constants file.

anc07*_0002.dat

Static Ancillary

Science Team

Atm constants file.

anc07*_0005.dat

Static Ancillary

Science Team

L1A constants file.

anc08*.dat Dynamic Ancillary UTexas Precision Orbit file.

anc09*.dat Dynamic Ancillary UTexas Precision Attitude file.

ancl2* _0000.dat Static Ancillary Science Team DEM file.

ancl2* 0001.dat Static Ancillary Science Team DEM mask file.

ancl3*.dat Static Ancillary Science Team Geoid file.

ancl8*.dat Static Ancillary Science Team Standard atmosphere file.

anc24*.dat Dynamic Ancillary UTexas Rotation Matrix file.

anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.

anc30*.dat Static Ancillary Science Team Global aerosol categorization
map file.

anc31*.dat Static Ancillary Science Team Aerosol tropospheric classifica-
tion map file.

anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.

anc35*.dat Static Ancillary Science Team Ozone file.

Version 3.0 Page 11-2 October 2002

GLAS_Atm GSAS Detailed Design Document
Table 11-1 GLAS_Atm Inputs (Continued)
File Spec Type Source Short Description
anc36*.dat Dynamic Ancillary atm_anc Atmosphere Calibration file.
anc38*.dat Static Ancillary Science Team Multiple-scattering table file.

anc45* 0002.dat

Static Ancillary

Science Team

GLAO2 metadata input file.

anc45* 0007.dat

Static Ancillary

Science Team

GLAO7 metadata input file.

anc45*_0008.dat

Static Ancillary

Science Team

GLAO8 metadata input file.

anc45* 0009.dat

Static Ancillary

Science Team

GLAOQ9 metadata input file.

anc45* 0010.dat

Static Ancillary

Science Team

GLA10 metadata input file.

anc45*_0011.dat

Static Ancillary

Science Team

GLA11 metadata input file.

Control File

Control

ISIPS Operations

Control file.

gla02* .dat

Level-1A Product

GLAS_L1A

L1A Atmosphere product file.

Table 11-2

GLAS_Atm Outputs

File Spec

Type

Destination

Short Description

gla07*.dat

L1B Atm Product

Archive

L1B Global Backscatter product
file. Contains full 532 nm and
1064 nm calibrated attenuated
backscatter profiles at 5 times
per second, and from 10 to -1
km, at 40 times per second.
Also included will be calibration
coefficient values and molecular
backscatter profiles at once per
second.

gla08*.dat

L2 Atm Product

Archive

L2 Planetary Boundary Layer
and Elevated Aerosol Layer
Height product file. Contains
elevated aerosol layer height
data consisting of top and bot-
tom heights for up to 5 aerosol
layers below 20 km at once per
4 seconds, and top and bottom
heights for up to 3 aerosol layers
above 20 km at once per 20
seconds.

October 2002

Page 11-3

Version 3.0

GSAS Detailed Design Document

GLAS_Atm

Table 11-2 GLAS_Atm Outputs (Continued)

File Spec

Type

Destination

Short Description

gla09*.dat

L2 Atm Product

Archive

L2 Cloud Layer Height product
file. Contains top and bottom
heights for up to 10 layers below
20 km at once per 4 seconds,
once per second, 5 times per
second, and 40 times per sec-
ond (below 4 km only). Ground
heights will also be provided at
each resolution.

glal0*.dat

L2 Atm Product

Archive

L2 Aerosol Vertical Structure
product file. Contains cloud and
aerosol backscatter and extinc-
tion cross section profiles.

glall*.dat

L2 AtmProduct

Archive

L2 Thin Cloud/Aerosol product
file. Contains optical depths for
clouds for up to 10 layers, the
planetary boundary layer, and
aerosols for up to 8 layers.

gap07*.dat

L2 Atm Quality

QA

L1B Global Backscatter quality
file.

qap08*.dat

L2 Atm Quality

QA

L2 Planetary Boundary Layer
and Elevated Aerosol Layer
Height quality file.

gap09*.dat

L2 Atm Quality

QA

L2 Cloud Layer Height quality
file.

gapl0*.dat

L2 Atm Quality

QA

L2 Aerosol Vertical Structure
quality file.

gapll*.dat

L2 Atm Quality

QA

L2 Thin Cloud/Aerosol quality
file.

anc06*.dat

Dynamic Ancillary

ISIPS Operations

Standard metadata/processing
log file.

11.5 Functions

Figure 11-1 shows the top-level structure chart of GLAS_Atm. The basic processing
algorithm is summarized below:

< [Initialize (MainlInit)

= Set the local execution flags (eCntrl_Init)
= Parse the Control File (GetControl)
= Open the specified files (OpenFiles)

Version 3.0

Page 11-4

October 2002

GLAS_Atm GSAS Detailed Design Document

= Print the control file (Print_Cntl)
= Read ancillary files (ReadAnc)
= Write version info (Write_LibVer, Write_AncVer)
= Until all data are processed...
- Execute the Atm_Manager
= Close all files and generate summaries (MainWrap)

PGE Core
Routines |« GLAS_Atm — p MainWrap

Mainlnit
eCntrl_Init
GetControl
OpenFiles
Print_Cntl
Write_LibVer
ReadANC
Write_AncVer
Write_eCitrl Atm_Mgr
ReadData

checkoutput
(PGE core)

Figure 11-1 GLAS_Atm Structure Chart

11.5.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this docu-
ment.

= Mainlnit

e eCntrl_Init

= GetControl

e OpenFiles

= Print_Cntl

e Write_LibVer

e ReadANC

= Write_AncVer

= ReadData

e MainWrap
11.5.2 Atm Manager (Atm_Mgr)

The Atm Manager controls execution of the Atmosphere subsystem, passes variables
from the input GLAO2 product to the output GLAO7-11 products, and handles gran-
ule start/stop. The manager controls execution of the science algorithms based on

October 2002 Page 11-5 Version 3.0

GSAS Detailed Design Document GLAS_Atm

flags received from GLAS_Atm. Figure shows the Atm_Mgr structure chart. Figure

PGE Core Routines Atm_Mgr
- A G8_11
glaxx_hdr_init -48_50_
glaxx_hdr_update
com_hdr_update
Write_glaxx_hdr
GLAS_Error A_aer_opt_prop
A_aer_lays
A_cal_coefs
A_pbl_lays
C_IntrpPOD
A_cld_lays
C_CalcSpot
C_GetGeoid / C_CalcDEM A_interp_met A_mbscs \ A_rebin_lid
A_bscs A_bscs A_ga_G7 WriteAtm A_buff_data

Figure 11-2 Atm_Mgr Structure Chart

11-3 shows a flow chart of the Atm Manager..

Atm_Magr is passed arrays of output file control structures and execution flags. It
accesses product and algorithm data directly from the requisite public data struc-
tures. Execution flags are defined in eCntl_mod; file control structures defined in the
fCntl_mod component of the exec_lib, and product/algorithm data within the
GLAO02 and GLAO07-11 components of the product_lib.

The first thing the manager does is check for an end-of-granule condition within each
defined output file by comparing the nominal time of data (set by ReadData_mod)
with the appropriate stop time within the specific file data structure. If an end-of-
granule condition is detected, wrap-up and final QA routines are called and the
product and QA files are closed. If another granule of the same type has been speci-
fied in the control file, the manager opens the appropriate product and QA files and
loops to verify the stop time of the new granule is greater than the nominal time of
data.

After checking the granule times, processing begins. The manager calls A _cal_coefs
to get calibration coefficients from ANCS36. It then calls common library geolocation
and DEM routines to compute position and elevation and A_interp_met to get mete-
orological data.

Next, the manager buffers the data and executes several science algorithms based on
its execution flags and data availability. These algorithms are discussed in the DFD
section. Each returns a flag indicating if the appropriate data product should be writ-

Version 3.0 Page 11-6 October 2002

GLAS_Atm GSAS Detailed Design Document
If (start_of_processing) initialize headers
Loop through granule times: if current time >= stop time
for GLAO7: set end_of_1s_granule flag to 1
—> Increment to next granule for GLAO7

for GLA08-11: set end_of_4s_granule flag to 1

True

Call A_cal_cofs
to get calib cofs

Call E_CalcDEM
‘ <

to get DEM

if (.not. no_pod)

True

—

Call C_interp_pod
to get POD

—

Call C_CalcSpLoc
to get satellite ht

Call C_CalcSpLoc

to get lat/lon/elev

¢

Call E_GetGeoid
to get geoid

Call A_met_interp
to get MET profs

Call A_rebin_lid
to vert align profs

Call A_mbscs >
to get molec profs

Call A_bscs
< to get back profs <
¢
Call A_ga_G7 (end_of_1s_granule flag, end_of_processing flag)
True to get QA stats for GLAO7
if (bs_to_end) —P if (end_of_1s_granule) average and write QA , then sum
if (end_of_processing) average and write QA
else sum
True
¢ if (end_of_processin
1
Set (i_write_ctrl) = 1 (write GLAQ7)
¢ Call WriteATM (i_write_ctrl) to write GLAO7 product

True

if (end_of_1 sf%)/

Set end_of_1s_granule flag to 0
Increment to next QA granule for GLAO7

<

Figure 11-3 ATM Manager - Part 1

October 2002 Page 11-7 Version 3.0

GSAS Detailed Design Document

GLAS_Atm

if (bs_to_end)

if (cld_to_

end) False

Call A_buff_data (end_of_4s_granule flag, end_of_processing flag)
> to buffer 20 secs of data and pass-throughs for 4 sec products

Set i_complete_buf to 0

if (end_of_processing
if (end_of_4s_granule == 1

if (time since t(1) <= 20 s

True

| Fill 20 sec tmp buffer |

Output 20 sec output arguments
Clear 20 sec tmp buffers
Reset time t(1)

Set i_complete_buf to 1

v

if (i_complete_buf == 1)

+—1

False

Call A_cld_lays
to get cld hts

> Call A_pbl_lay
to get PBL lay

> Call A_aer_lays >
to get aer lays

Call A_aer_opt_prop
to get optical properties

Call A_ga_G8-11 (end_of_4s_granule flag, end_of_processing flag, i_qa_ctrl))

to get QA stats for GLA08-11

if (end_of_4s_granule or end_of_processing) add to sums, then average and write QA <

else add to sums

|
Set (i_write_ctrl) = 2 (write GLA08-11)

v

[Call WriteATM (i_write_ctrl) to write GLA08-11 products |

Go to to start of bufferj

if (end_of_4s_granule == 1

Figure 11-4 ATM Manager - Part 2

if (end_of_processing)

True

I

Increment to next QA g

Set end_of_4s_granule flag to 0
Increment to next granule for GLA08-11

ranule for GLA08-11

True

Version 3.0

Page 11-8

October 2002

GLAS_Atm GSAS Detailed Design Document

ten. Values which are passed directly from one product to another are set appropri-
ately.

QA routines are called to process QA information and the WriteAtm routine is called
with the appropriate flags to write data to the product files. Before writing a record,
WriteAtm verifies that the appropriate output file exists and that the nominal time of
data is greater than the start time specified in file control structure. If the nominal
time is less than the start time, the data record is not written. An appropriate error
message is written to ANCO6 if a record is skipped.

11.6 Atm_Subsystem

The function of the ATM L1B Calculate Calibration Coefficients, Profile Locations,
and DEM process is to geolocate the lidar data, calculate the range of the satellite to
the geoid height, compute the DEM elevation for the profile location, and compute
the 532 nm and 1064 nm calibration coefficients.

The function of the ATM L1B Calculate Backscatter Cross Section Profiles process is
to create parameters for the Level 1b Global Backscatter Data Product GLAOQ7 includ-
ing meteorological profiles and 532 nm and 1064 nm attenuated backscatter cross sec-
tion profiles.

The function of the ATM L1B Create QA Statistics and Write ATM process is to create
Level 1B granule QA statistics, write the QAPO7 QA product files, and write the
GLAO07 data product files.

The function of the ATM L2 Buffer 20 Seconds process is to buffer 20 seconds of Level
1b data for input into the level 2 processes. The processing of Level 2 data is buffered
for 20 seconds irrespective of time gaps between data records.

The function of the ATM L2 Calculate Layer Heights process is to create parameters
for the Level 2 Global Planetary Boundary Layer and Elevated Aerosol Layer Heights
Product GLAO8 and the Level 2 Global Cloud Heights for Multi-layer Clouds Prod-
uct GLAOQ9. This process determines, at several resolutions, the top and bottom eleva-
tions of multiple cloud and aerosol layers, ground detection heights, and the
planetary boundary layer (PBL) height.

The function of the ATM L2 Calculate Optical Properties process is to create parame-
ters for the Level 2 Global Aerosol Vertical Structure Data Product GLA10 and the
Level 2 Global Thin Cloud and Aerosol Optical Depths Data Product GLA11. This
process creates cloud and aerosol backscatter cross section profiles and extinction
cross section profiles. Optical depths for multiple cloud and aerosol layers and the
planetary boundary layer are also created.

The function of the ATM L2 Create QA Statistics and Write ATM process is to create
Level 2 granule QA statistics, write the QAP08-11 QA product files, and write the
GLAO08-11 data product files

October 2002 Page 11-9 Version 3.0

GSAS Detailed Design Document GLAS_Atm

GLAAMG 13 GLA AT 18- ru_:_lll T0ed _gird cortrel B33 hdar 1084 _dar controd
- " LY mg_to_Sdd_prat % # — .
x.._-.___l;LH_grlﬂ Y Shd_atrm_ lﬂEL] e .__g - ""\-\.,\.Jl . | ._,r' ;.__,.-' . H"'\,J' e |-1ﬁ_|j.-||,;|
range by _GRAANC 01 I MUy J'. O ammLB e
ANy e A -!" Eraate LA Q18 lun
corred H \ \.Ilnmnt data —L-l_- C ar N reae LA
. e e ATMLIB | Stats and "o AnT
lifsie "a H ':'i,. "J‘ ozone_data Cal ! "."'-'i"ll:e.--.'ll'r'
e 417 "“x _wsat mp penid .- Backscat f- QAPOT
POD T ATMLIE T, huis A e s pses —
- Cale Calb r" 5 ; o
GLA AMC 08 . — 532 bars
. Coetts, Pro¢ |~ 1084_cal cof f":-;jﬁ — — rh-a-f —
F&D Lac, and DEM l,u' = = Fan .1||_|Ir - % {04 hece .-I_-"' i
GLA ANG 00— _,,v f““— . prf_loc < ’? e . = O
rakation ratr: ff H‘ met pn:.f" ___ — — ATM L2 \'f: wpn_elew_buf
GLAANC 24 T Yt ., I:-:||:-:| BlEy — Blutfir " *
TLI}_ A _ 1T S
'Ilmf] = ' "*JLI'-'I-FMI » o -“:.,_::J‘-'E:I{ -H“"“*-.
GLAANC 137 [/ DLAANC 30 _angle._ ,;,'n__, I e g Brof_loe b
seg_ca_cof_infe H nult_scat_dats contrdd / /" met_praf_buf {.-,Ih, b .
TGLAANC 38 dlab_serman™, QAL x / ~ }m bscs buf g g -

GLAANC 81~ ~ ‘x H_ﬁ £3% W_beck_| tmrlf fx‘

corirol — . "’__. E
. ~ e HET_ DD gy e, ™ - 'l.# = N
s 47 '\'H.'% = _"-._ . 4 b e o - I|II aral
LA _lune %) ATMLS ™ cld_bs w2 ATM L2 . |:|||I' I bl *:h‘x i
L2 data , § o @er_mst] Cale - 'w!-
Creae O |y it -~ 1 optal ST Y mﬁ? \
- "\ﬁ'l."'-l'r'ﬂE.l"-fh'll ,"I a:r::ll ::';: f Frops /‘K\H =l -— '-, Cae Cldf
o = hts —_— 'f Lanyi
GLADE-11 4 —Eubse_pbi_ '1I:E.-"“ , ‘H by ,-;; " aer hit g— A LT I-.:pmr ..Iu
FeTT R L subser_zer hisx B aer_od ~ pbi_hts = L
—_ subsat_cid_hes POLDA ~ cld_od aer_ed —

Figure 11-5 Atmosphere Subsystem Processes
11.6.1 DFDs and their Descriptions

Below is a breakdown of each of the atmosphere processes into subprocesses. Each
subprocess corresponds to a Fortran 90 subroutine (name in parentheses) that is
called by the atmosphere manager. Below are general comments:

= Subprocesses do not call each other, but are called in turn by the atmosphere
manager (AtmMgr) which is itself a subroutine. Therefore data are passed as
arguments between subprocesses. Likewise, data products are written by a
separate subprocess and not by the subprocesses creating the output data.

= Only subprocesses directly called by the atmosphere manager are shown in
the diagrams.

= Each subprocess that shows a dotted control line in the diagram is under con-
trol which means that it is only selectively called by the atmosphere manager
based upon the processing scenario selected in an input control file.

= Each subprocess calls a common error routine (GLAS_Error) when an error
condition occurs. Depending on the severity of the error, the processing may
continue or stop, but in any case, all error messages are written to a common
ancillary log file (ANCO06).

Version 3.0 Page 11-10 October 2002

GLAS_Atm GSAS Detailed Design Document

11.6.1.1 ATM L1B Calculate Calibration Coefficients, Profile Locations, and
DEM Subprocesses

The ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM process
is divided into five subprocesses. Following is a description of each subprocess:

Ccontrod carbral FAE_-EII'I';IE

-

_pe SUL_range

e . LS VR L E D s
- 4 g2 e/ ATMLIE T 4 topa_elev
R b ™ FANGE = e ‘lll__ e =
T aSlMLIE) — | -8 .- I
POD —— | Interpolate ™, FProfie |
\ POD PAD ————s, LOCANCN 7 eartrol

4 B t
.\H"-\-_ R x"'x __.-"". ':i = qeor " o — -
‘u._‘ _._‘__.-- .I'. - 1,:...- i1 L"‘x.;-'
PODO pas wect J." ' o f'l'l'-'I_LL1EI y
= = / | Gat Geaid
rofaton Matn:

o - M, Y, §
. "5, = =
417 " - -

: -
- = ! Conn
B e A ATMLIE
™ Cale .
o Coetfs .,

B } " 'H._. l .___-" - -\"'\-\.
ozone_data 7 A < e CEM_gnd -x‘;}-" 'l.|d|'|"1 Ir:li=
F ey ¥]

; a -
_..-"f ___.-"'I T_ ™, - 537 cal cof --h-'“'-u-tjl Calculate |
mat n.q.r: 4 N h, UM
std_atm_data
zeq_cal_cof infg
Figure 11-6 ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM
Subprocesses

u

ganid_ht
-

monknnl

104 eal eal

11.6.1.1.1 ATM L1B Calculate Calibration Coefficients (A_cal_cofs)

Reads a file containing the entire granule's worth of 532 nm and 1064 nm backscatter
calibration coefficients output in x minute segments. Depending on options used in
the ancillary atmosphere constants file, 532 nm and 1064 nm calibration coefficients
are calculated for each second of the granule. Options include averaging the segment
coefficients or using lab-measured coefficients instead, since the calculated coeffi-
cients, especially the one at 1064 nm, may be unreliable due to low signal at high alti-
tude.

11.6.1.1.2 ATM L1B Interpolate POD (C_IntrpPOD)

Creates the precision orbit determination (POD) position vector based on time. This
is a common routine used by several processes.

11.6.1.1.3 ATM L1B Calculate Profile Locations (C_CalcSpLoc)

Utilizes the POD position vector to generate the profile location at 1 second. This is a
common routine used by several processes. It also computes the satellite range to

October 2002 Page 11-11 Version 3.0

GSAS Detailed Design Document GLAS_Atm

ellipsoid. When the precision attitude determination (PAD) and range are input, it
calculates the attitude angle and topographic elevation.

11.6.1.1.4 ATM L1B Get Geoid (C_GetGeoid)

Utilizes the profile location to generate the geoid height at that location. This is a
common routine used by several processes. The geoid height is used to compute the
satellite range to geoid.

11.6.1.1.5 ATM L1B Calculate DEM (E_CalcDEM)

Utilizes the profile location to generate the Digital Elevation Model (DEM) height at
that location. This is a common routine used by several processes.

11.6.1.2 ATM L1B Backscatter Subprocesses

The ATM L1B Calculate Backscatter Cross Section Profiles process is divided into
four subprocesses. Following is a description of each subprocess

£32 M _trans cantral
cantral o =T 10B4_M_trans
o - &7 Lol ___.--"_r 592 hda
. & b h na oECE -~
& ATMLIB N Bt 1064 _id “n;' 123 H‘
| Calc Moler I| e 10B4 M s il ATMLIB Y
Hai k"\._l al] _a{ Wertically :I
\, Cross E,I'M 7 PAO_angle — & Align Lidar
. Prafs A Frofs
— ", sal_rng_geod - r}\
b1 &, _.r' -~ !
kY densiby mg_to_532_prof = .-"flr.-"J
. -
ll"'-.,l S mg_to_1084_prof f’f !
met_prod T ff ‘-‘
fime o "“'-.h_. ,__.-' 1084 _rebin eartral
o o e, L -
421 N ~., 532_rebin %
praf_loc Y ATMLIB "1." H"u. - o _ B
— ntern Met | R -~ - -
ol loc S S R
T Dt f:" : . -, ‘; ATMLIE %
- P [Calc :|
e ! orone_dats - Backscat
it _data Jx" '\ Cross Sect [/
std_atmn_data 537 cal cof ——" ﬂ"i,,,_q_ _H_;f’ﬁ"*
- - I\"x ole Lr]
1064 cal cof ~ w S32bscs
054 bscs
Figure 11-7 ATM L1B Backscatter Subprocesses
11.6.1.2.1 ATM L1B Interpolate Met Data (A_interp_met)

Interpolates and combines meteorological (met) data and standard atmosphere data
to generate met profiles at 1 second. Standard atmosphere data are used to augment

Version 3.0 Page 11-12 October 2002

GLAS_Atm GSAS Detailed Design Document

the met data at higher altitudes and are used for the entire output profile if met data
are unavailable.

11.6.1.2.2 ATM L1B Calculate Molecular Backscatter Cross Sections
(A_mbscs)

Utilizes met profiles at 1 second to create 532 nm and 1064 nm molecular transmis-
sion profiles and backscatter cross section profiles at 1 second.

11.6.1.2.3 ATM L1B Vertically Align Profiles (A_rebin_lid)

Combines and vertically aligns 532 nm and 1064 nm lidar signals to create lidar pro-
files at 5 Hz and 40 Hz. For 532 nm, the 5 Hz profiles range from 41 to -1 km below
the surface. For 1064 nm, the 5 Hz profiles range from 20 to -1 km below the surface.
In both wavelengths, the 40 Hz profiles range from 10 to -1 km below the surface.

11.6.1.2.4 ATM L1B Calculate Backscatter Cross Section Profiles (A_
bscs)

Calibrates the 532 nm and 1064 nm lidar profiles by the backscatter calibration coeffi-
cients to create the attenuated backscatter cross section profiles at 5 Hz and 40 Hz. If
the 532 nm backscatter signal is saturated, it is an option to replace it with the corre-
sponding 1064 nm backscatter value.

11.6.1.3 ATM L1B QA Statistics and WriteATM Subprocesses

The ATM L1B Create QA Statistics and Write ATM process is divided into two sub-
processes. Following is a description of each subprocess

T T
\ L1B_da:a L1B_data
.". : Iy
I ".l" _.-'I-r L...Il...- "-l
arlra i’ - - 3
- ¥ Py S
._\.. .-... ':-:l \"\-,h -_u. 13-_ -\.\.hl
ATMLIEB ‘-.I { ATMLIE A
Create (A Wirite ATM :|
Stats J \ J
Y ; .'x e
-) __.-'"'- _.__.-"
|F_ '!|
{
y ¥
CARDT sLadT

Figure 11-8 ATM L1B QA Statistics and WriteATM Subprocesses

11.6.1.3.1 ATM L1B Create QA Statistics (A_ga_G7)

Creates Level 1B QA statistics for the granule and outputs them to the QAPO7 QA
product file.

11.6.1.3.2 ATM L1B Write Atmosphere (WriteAtm)
Writes Level 1B data to the GLAOQ7 data product file.

October 2002 Page 11-13 Version 3.0

GSAS Detailed Design Document GLAS_Atm

11.6.1.4 ATM L1B L2 Buffer 20 Seconds Subprocess

The ATM L2 Buffer 20 Seconds process is a single process. Following is a description

\ L1B_data L1B_data
.". i 'y
I 1.1 _.-"-r L...Il...- ".I
anlra i’ e 3
L e e«
"u, _.--. 471 .H& -_w. 433 -\.\.hl
ATMLIB ‘-.I { ATMLIB
(Create (14 Wirite ATM :|
Stats \ /
L r "y s
- __.-'"'- .__.-"
|r_- I!|
!
¥]
CIARDT GLAad?

Figure 11-9 ATM L1B QA Statistics and WriteATM Subprocesses

11.6.1.4.1 ATM L2 Buffer 20 seconds (A_buff_data)

Buffers Level 1B data for 20 seconds for input into the Level 2 processing. This is nec-
essary because lidar signals need to be collected for 20 seconds for high altitude aero-
sol detection. Twenty seconds of data are buffered irrespective of time gaps between
data records.

11.6.1.5 ATM L2 Calculate Layer Heights Subprocesses

The ATM L2 Calculate Layer Heights process is divided into three subprocesses. Fol-
lowing is a description of each subprocess:

11.6.1.5.1 ATM L2 Calculate Cloud Layers (A_cld_lays)

Detects cloud layer heights and ground heights at once per 4 seconds, 1 second, 5 Hz,
and 40 Hz. Up to 10 cloud layers may be detected below 20 km, except at the 40 Hz
resolution where up to 1 layer may be detected under 4 km. Layers may only be
detected at the higher resolutions if they were detected at the lower resolutions. A
cloud/aerosol discrimination routine discriminates some of the layers detected at
once per 4 seconds as elevated aerosol layers.

11.6.1.5.2 ATM L2 Calculate PBL Layer (A_pbl_lay)

Detects planetary boundary layer (PBL) heights and ground heights at once per 4 sec-
onds and 5 Hz.

11.6.1.5.3 ATM L2 Calculate Elevated Aerosol Layers (A_aer_lays)

Detects elevated aerosol layer heights. Up to 3 aerosol layers may be detected above
20 km at once per 20 seconds, while up to 5 aerosol layers may be detected below 20
km at once per 4 seconds. It is an option whether to use this algorithm to detect aero-

Version 3.0 Page 11-14 October 2002

GLAS_Atm GSAS Detailed Design Document

837 h=rs_buf
837 becs bl €37 M hees Bub chd
1 i "
J e T e
| / srf_ht_buf L b bud
| ! . -~
carral | ,r"l - . l -
. i ..,.E:l _.-"'..-- . - T .-"'-l..‘
. 0 -~ ey -
" a .r'- - -, - ’ l1 & } R*
“a 451 A
_ { ATMLZ !
f ATMLE A Calc PEL |
Cale Olond Sl
. I Larnrs
'l' Lavers III-__ — . od s - e ."-a. eIy .r\'-lr._h
%, .:’II I : Ny T
- . . 1 - .
S - plal _hts
aer_nis |
L cantral e
o) n & L - il
v X _h‘ ['r-_hl- — lII III e i
..\-- _Il) - .._.-'
532 M_bscs_buf A . —
bl S \Y
- R T 1 IRV o~ eL_prof_but
prof_loc_buf BoAML? N
e il !
sl kil buf — — Elevabed |
\, Aerosal A
e ﬂ't. ae.r_hl:s

Figure 11-10 ATM L2: Cloud / Aerosol Layer Heights Subprocesses

sol layers below 20 km or to keep the aerosol layers detected by the cloud detection
algorithm.

11.6.1.6 ATM L2 Calculate Optical Properties

The ATM L2 Calculate Optical Properties process is a single process. Following is a
description:.

11.6.1.6.1 ATM L2 Calculate Aerosol Optical Properties (A_aer_opt_prop)

Creates cloud and aerosol backscatter and extinction cross section profiles, and cloud,
PBL, and aerosol optical depths. Cloud data are created at 1 second while PBL and
elevated aerosol data are created at once per 4 seconds. Optical depths for up to 10
cloud layers are calculated, while up to 8 elevated aerosol optical depths are created.

11.6.1.7 ATM L2 QA Statistics and WriteATM Subprocesses

The ATM L2 Create QA Statistics and Write ATM process is divided into two subpro-
cesses. Following is a description of each subprocess

11.6.1.7.1 ATM L2 Create QA Statistics (A_ga_G7)

Creates Level 2 QA statistics for the granule and outputs them to the QAP08-11 QA
product files.

October 2002 Page 11-15 Version 3.0

GSAS Detailed Design Document GLAS_Atm

532_bscs_buf
532_M_bscs_buf

met_prof_buf
prof_loc_buf

cld_hts
time_buf

pbl_hts

control
aer_hts

4.6.1
ATM L2 Calc Cloud &
Aerosol Optical Props

aer_msf

aer_ext
cld_msf
cld_ext

pbl_hts
cld_bs

aer_hts aer_bs

cld_hts
cld_od

cld_sval

aer_sval pbl_od aer_od

Figure 11-11 Atmosphere Subsystem: Optical Properties Subprocesses

A luns s
Ll data — .
/ .
cartral . I . e
) a7l s 4732 %
Tu i 471 %, . & . "
A ammLz N J ATMLT Y
|Ir Creale (8 !. Wil ST |
sl.ll[':- 1 ':u
o e . i
4 \H'i- - s - il '“‘u,, .
i H"-\. \ . .
.':. I|I "._‘l '-\.kx II __\xl "
/ A 4 | ., GLATT
o 1
AR ¥ 1 QA1 r s :
QEP0e LAEF 1) LALH GLADS GLATD

Figure 11-12 ATM L2 QA Statistics and WriteATM Subprocesses

11.6.1.7.2 ATM L1B Write Atmosphere (WriteAtm)

Writes Level 2 data to the GLAO08-11 data product files. Data products GLA08-11 are
always created together. Aerosol layer heights are written to GLAO0S, cloud layer
heights are written to GLAO09, cloud and aerosol backscatter and extinction profiles
are written to GLA10, and cloud and aerosol optical depths are written to GLA11.

Version 3.0 Page 11-16 October 2002

GLAS_Atm GSAS Detailed Design Document

11.6.2 Structure Charts

The following structure charts illustrate the organization of the atmosphere computa-
tions software modules. Modules are called top to bottom and from left to right.
Input variables point downwards to the modules that are receiving them while out-
put variables point upwards from the module which created them. Control is not an
argument, but indicates which modules are only selectively called by the atmosphere
manager for partial reprocessing.

532_cal_cof -
1064 _cal_cof = o

uni:m!* e |-.1r-:||’_ln:-|:'b Mg —
w topo_ele :
seg_cal_cof_info 0" :lull:l?jnul: ‘~ \@a—i} @ 13 E@ @
=id_afrm_dats w2 PAD_angle \\' .
met_daa *TPOD pas vect control ¥, DEM® ‘*-HH
ozone_data =% caritral IJmE"‘?. geod IE’ i |'r||1|'|'11-\‘-\
J_‘f"“ time o range contral®y’, .r locBi.,
- POD P FADY geoid N e ot
g 'y POD_pos_vectq F'f'i'f_":":“;\{m M_gnd™a,
A_cal cofs C_IntrpPa0 ©_CalcSploc E_Gefienid E_CalcOEM
1152 11563 1154 11545 1156

Figure 11-13 ATM Calibration Coefficient / Profile Location / DEM Modules

L .
___,.-"'"' I--ﬁu Il bscs
- control
- % time
-‘_‘.--" |1|-.r|-ul'|."I \h"‘: o, prof_loe
L~ 532 M _trans £ f 532 _rebin ,.l_"';.\ %, density
Met_prof " 1064 M _trans 2 [10B4_rebin’ ° L 537 _rebin
tme " 537_M_bscs g a
control %, 4 {064 rebin
me_h:l: o |ﬂ|:i"|-_.b|'|_|!'|.'.r!5':!t 537 |I[5-Equ.| u] -
ot e o control lJ”-ﬁ-_q o \\4 532 cal cof
o JOR_N03r " 1084_cal_cof
Etd—aw—daﬁ" rrigd |:|||:|1zlllI FAD_angle%, 0
et . gecid®, W orone_data

rrg_ta_S37_prof™
g ko 106 pral ™,

A_hses
11510

A_interp_mat
11867

A_retin_I
1159

Figure 11-14 ATM Backscatter Modules

October 2002 Page 11-17 Version 3.0

GSAS Detailed Design Document

GLAS_Atm

LA e E LAY

caniral Coonirod
C0A_Juny ks

247 ca col 'P

1064 cal_cof o

532 M_bscs
1054_M_bses o
£32 hees 4
10E4_bscs
L

i

Figure 11-15 ATM L1B QA Statistics / Write ATM Modules

canfral
!

e
532_M_bsc sr

‘?IIHIH Il

%31_M_b5|: 5_buf

532_bscs 35

:‘lllr A4 bt b
prof loc -E
met_prof ¥, Prof_toe._but

:IEl arr||-!| pral bt

3

B _ne_but

arf_kit
Fabl ﬂn-uluE
toga uh.-.-:f ‘g’-ﬁﬂ_angle_huf

¥

%wu ey buf

A_bit_dats
11513

Figure 11-16 ATM 20 sec Buffering Module

Version 3.0 Page 11-18

October 2002

GLAS_Atm GSAS Detailed Design Document

carlral

%, prof_loc_buf
te 532 M bscs buf

Ak hhi.}.:r %
J— phl_hts

537 M _bscs buf &%
547 bxcs bl

sfe bt tuf 5
o

eaintrol Y,
§32_bscs_buff

Oy sfc bt buf

Do rrel prof
cld_hes

4 phi_hts

A_3ET Eys
1.1 516

Figure 11-17 ATM Cloud / Aerosol Layer Heights Modules

iz

A “"‘E‘p a
aer_bs 4 et
aer_msf} | cld_bs
Al '.:"-'-'d|3 eld rrsf
agy ':"14; 3|::I|:| wval

phl |:||:|'.jl i nd
subset_aer_his 3 -

subiset_pbi_his
cantral

urme hud ;Etrﬂp_.'i!r_map

mE'tJ:'rE"_t'-lf? ¥ oliaby_ser_rrap

pral_loc hul'ﬁ" "Prm.lt =cat data
PAD_arsgle ¥ § sef_he_buf

537 M bscs bul] ¢ ckd_ts
531 nsu-.,-%* ﬁ.mr:hﬁ
7 pbi_hts

ESLhEﬂ_E|ﬂ_h[“S

A_zar_opt_prog
11517

Figure 11-18 ATM Optical Properties Module

October 2002 Page 11-19 Version 3.0

GSAS Detailed Design Document GLAS_Atm
QAP 2 1, GLATT
QP10 7 3 GLAID
QAFDE 3, GLADY
LARE 2 3, GLANA
. conaral
1.ur|lru.!' 0 cid_od
(4_kns P mer_od
cld hix ffn|ﬁ_m|
phil_hts b P aer_sval
280 hiE Fecid_mst
B F & aer_mmsl
A_ma GE_11
11518
Figure 11-19 L2 QA Statistics / Write ATM Modules
Version 3.0 Page 11-20 October 2002

Section 12

GLAS Reader

GLAS_Reader is a utility GSAS PGE. It uses the Waveform and Elevation subsystems
to create GLAS Level 1B and 2 data from the Level 1 GLAS altimetry data products.
GLAS_AIlt will read the GLAOL file created by GLAS_L1A to create the GLAO5,
GLAO06, and GLA12-15 products. GLAS_Alt can also read the GLAOS5 file which it cre-
ated in a separate processing scenario to create GLA06 and GLA12-15. Additionally,
GLAS_Alt can read the GLAO5 and GLAOG files created in a separate processing sce-
nario to generate GLA12-15.

12.1 Function

GLAS_Reader is a utility GSAS PGE. It reads various GLAS files and creates human-
readable text output files.

12.2 Design Approach

The following design criteria are specific to GLAS_Reader
e GLAS_Reader fully uses the standard routines from the model GSAS PGE.
= Output files are named by adding extensions to the input file name.

= GLAS Reader provides a rudimentary user interface when executed without a
control file command-line argument.

12.3 Input and Output Files

Table 12-1 lists the potential inputs files to GLAS_Reader. All or some of these files
may be specified. Note, however, than GLAOO APID files may not be specified with-
out also specifying a corresponding ANC29 file. See the appropriate section of this
document or the GLAS Data Products Specifications Volumes for details regarding
the non-specific files.

Table 12-1 GLAS_Reader Inputs

File Spec Type Source Short Description

anc0l1l*_??.dat Dynamic Ancillary met_util Subsetted meteorological files.
There is a separate ANCO1 file
per data type. All of the ANCO1
files must be specified.

anc07*_00.dat Static Ancillary Science Team GLAS error file.
anc07*_01.dat Static Ancillary Science Team GLAS global constants file.
anc07*_02.dat Static Ancillary Science Team GLAS waveform constants file.

October 2002 Page 12-1 Version 3.0

GSAS Detailed Design Document

GLAS_Reader

Table 12-1 GLAS_Reader Inputs (Continued)

File Spec Type Source Short Description
anc07*_03.dat Static Ancillary Science Team GLAS elevation constants file.
anc07*_04.dat Static Ancillary Science Team GLAS atmosphere constants

file.
anc07*_05.dat Static Ancillary Science Team GLAS L1A constants file.
anc08*.dat Dynamic Ancillary UTexas Precision orbit file.
ancl2* 0l.dat Static Ancillary Science Team DEM mask file.
ancl3*.dat Static Ancillary Science Team Geoid file
ancl6*.dat Static Ancillary Science Team Ocean Tide file
ancl7*.dat Static Ancillary Science Team Load Tide file
ancl8*.dat Static Ancillary Science Team Standard Atmosphere file
anc25*.dat Dynamic Ancillary Science Team GPS/UTC conversion file.
anc27*.dat Static Ancillary Science Team Regional mask files.
anc30*.dat Static Ancillary Science Team Aerosol file
anc31*.dat Static Ancillary Science Team Troposphere file
anc32*.dat Dynamic Ancillary GLAS_LOproc Frequency board to GPS time

correlation file.
anc33*.dat Dynamic Ancillary Science Team UTC time conversion file.
anc36*.dat Dynamic Ancillary atm_anc Atmosphere Calibration file.
anc45*.dat Static Ancillary Science Team Metadata input files.
Control File Control ISIPS Operations Control file.
gla00*.dat/ Level-0 APID/ EDOS/ GLAS Level-0 APID files and
ANC29*.dat Dynamic Ancillary GLAS_LOproc the requisite ANC29 index file.
gla*.dat GLAS Product GSAS GLAS Product files.

GLAS_Reader will create an output file for each type of input file requested.
GLAS_Reader will strip the ‘.dat’ from the specified input filename and replace it
with a “.txt’ extension. Time selection for the output files is based on the time speci-
fied with the input files.

A corresponding ANC29 file is required to process GLAOO APID files. When process-
ing GLAOO APID files, GLAS_Reader writes all output to the ANC29 text file, instead
of to individual APID files. The benefit of this is that the output is created in time-
aligned fashion. Also note that specific APID files may be processed even though the
ANC?29 file was created with a superset of the selected APIDs.

Version 3.0 Page 12-2 October 2002

GLAS_Reader GSAS Detailed Design Document

12.4 GLAS_Reader

The basic processing algorithm is summarized below:

12.4.1

Initialize (Mainlnit)

Set the local execution flags (eCntrl_Init)

Parse the Control File (GetControl)

Open the specified files (OpenFiles)

Print the control file (Print_Cntl)

Read ancillary files (ReadAnc)

Write version info (Write_LibVer, Write_AncVer)

Print ancillary files (WriteAnc)

Until all input files are processed...

- Write data until all data written (WriteData)

Close all files and generate summaries (MainWrap)
PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this docu-

ment.

Mainlnit
eCntrl_Init
GetControl
OpenFiles
Print_Cntl
Write_LibVer
ReadANC
Write_ AncVer
ReadData
MainWrap

October 2002 Page 12-3 Version 3.0

GSAS Detailed Design Document GLAS_Reader

Version 3.0 Page 12-4 October 2002

13.1

Section 13

met_ util

Overview

met_util is a GSAS utility. It does not use the functionality of the GSAS core PGE
model. met_util is a processing shell wrapped around wgrib legacy code.

13.2

Function

Met_util reads a meteorological (MET) file and creates subset files (i.e. temperature,
relative humidity, etc.).

13.3

13.4

Design Approach

met_util sets up input/output files and uses a system call to execute the wgrib
external program.

met_util does not follow the model GSAS PGE.
met_util does use facilities of the common libraries.

met_util does not perform multi-granule processing or allow for time selec-
tion.

Implementation of the control files does not follow GSAS PGE conventions.
No log/metadata (ANCO06) file is created.

Input and Output Files

Table 13-1 lists the required inputs to met_util. Table 13-2 lists the outputs created by
met_util. See the GLAS Data Products Specifications Volumes or GLAS Science Data
Management Plan for details regarding the these files..

13.5

Functions

met_util includes the following functions:

- M_read_control_mod.f90: Reads the control file and passes the input and
output file names to the program.

- wgrib: A stand alone 'C' program developed at NCEP to manipulate and
decode GRIB files. This routine is used extensively to extract relevant MET
parameters and create global data files. See http://wesley.wwb.noaa.gov/
wagrib.html for details on wgrib.

October 2002 Page 13-1 Version 3.0

GSAS Detailed Design Document

met_util

Table 13-1 met_util Inputs

File Spec

Type

Source

Short Description

anc40*.dat

Dynamic Ancillary

GSFC DAAC

Input NCEP Global Analysis
met file. 1 by 1 degree gridded
data set with sampling every 6
hours. Variables included are
temperature, geopotential
height, and relative humidity at
standard upper atmospheric
pressure levels. The MET files
are in the GRIB format, which is
the WMO (World Meteorologi-
cal Organization) standard for
exchanging gridded binary data.

anc07*_06.dat

Static Ancillary

Science Team

Utility error/constants file.

Control File Control ISIPS Operations Control file.
Table 13-2 met_util Outputs
File Spec Type Destination Short Description

anc01* _00.dat Dynamic Ancillary amt_anc Meteorological header file. Sub-
GLAS_Atm setted NCEP Global Analysis
GLAS_Alt file.

anc01* 0l.dat Dynamic Ancillary amt_anc Meteorological precipitable
GLAS_Atm water file. Subsetted NCEP Glo-
GLAS_Alt bal Analysis file.

anc01*_02.dat Dynamic Ancillary amt_anc Meteorological height file. Sub-
GLAS_Atm setted NCEP Global Analysis
GLAS_Alt file.

anc01* 03.dat Dynamic Ancillary amt_anc Meteorological relative humidity
GLAS_Atm file. Subsetted NCEP Global
GLAS_Alt Analysis file.

anc01* 04.dat Dynamic Ancillary amt_anc Meteorological temperature file.
GLAS_Atm Subsetted NCEP Global Analy-
GLAS_Alt sis file.

13.6 Functional Overview

The driver calls the routine that reads the control file and passes back the input and
output file names. These names are passed to a script which calls an executable
(wgrib) that creates the subset files

Version 3.0

Page 13-2

October 2002

met_util GSAS Detailed Design Document

Read Contral File [M_read contron)

Get [nput f Output File M ames

"'
Fead Error File

Owverall Process

-
Call Shell Script

-
End

Figure 13-1 Process Flow Diagram: Overall Process

October 2002 Page 13-3 Version 3.0

GSAS Detailed Design Document met_util

Start Shell Script

Create GRIB subset file of
relevant MET parameters
[compressead file)

¥
Create MET header file

} L 4
Shell Scri Creats MET height file
¥

Create hMet Temperature file

¥
Create het Relative Humidity file

I

Create et Precipitable water table file

I

End Shell Script

Figure 13-2 Process Flow Diagram: Shell Script

Version 3.0 Page 13-4 October 2002

Section 14
reforbit_util

14.1 Overview

reforbit_util is a GSAS utility. It does not use the functionality of the GSAS core PGE
model.

14.2 Function

The purpose of the reforbit_util program is to process a given Reference Orbit file for
all ascending equatorial crossings. Each ascending equatorial crossing will be given
a track number. The first track west of Greenwich (or on Greenwich) will be
assigned a Track number of 1 and its time will be determined. All consecutive tracks
after that (in increasing time order) will be assigned numbers 2, 3, 4, and so on. All
tracks that were to the right of Track 1, will be wrapped around the last track on the
left and numbered accordingly.

14.3 Design Approach
= reforbit_util does not follow the model GSAS PGE.
= reforbit_util does use facilities of the common libraries.

= reforbit_util does not perform multi-granule processing or allow for time
selection.

= Implementation of the control files does not follow GSAS PGE conventions.
< No log/metadata (ANCO06) file is created.

14.4 Input and Output Files

Table 14-1 lists the required inputs to reforbit_util. Table 14-2 lists the outputs created
by reforbit_util. See the GLAS Data Products Specifications Volumes or GLAS Science
Data Management Plan for details regarding the these files..

Table 14-1 createGran_util Inputs

File Spec Type Source Short Description
anc26*.dat Dynamic Ancillary UTexas Reference orbit t file.
anc07*_06.dat Static Ancillary Science Team Utility error/constants file.
Control File Control ISIPS Operations Control file.

14.5 Functions

reforbit_util includes the following functions:

October 2002 Page 14-1 Version 3.0

GSAS Detailed Design Document reforbit_util

Table 14-2 createGran_util Outputs

File Spec Type Destination Short Description

anc22*.dat Dynamic Ancillary I-SIPS Track file.The first record con-
tains the average period of the
tracks (in seconds), and the
number of tracks in the refer-
ence orbit file. All subsequent
records contain the longitude (in
degrees E longitude), the track
number, time in seconds relative
to Track 1, the actual MJD time
(in days), and the seconds of

day.
N/A Dynamic Ancillary SCF SCF track file.
N/A Dynamic Ancillary ISIPS NOSE track file

= rd_reforb_cntrl_mod.f90: Reads the control file and passes the input and out-
put file names to the program.

= c_profRefOrbit_mod.f90: Reads the Reference Orbit file and determines the
ascending equatorial crossing longitudes and track numbers.

* c_legacyintrpPOD_mod.f90: Interpolates the reference orbit data to determine
the position vectors for a given time.

= c_calcsploc_mod.f90: Calculates the location (lat, lon) that corresponds to a
given position vector.

14.6 Functional Overview

The driver calls the routine that reads the control file and passes back the input and
output file names. It then opens these files and passes their lon numbers to
c_procRefOrbit. The ¢c_procRefOrbit routine will read the reference orbit file one
record at a time and geolocate using ¢_calcsploc. It will be looking for records that
straddle the equator in the ascending direction. When such records are found, the
exact equatorial crossing location and time is determined. This is done by determin-
ing the location at a time that is midway between the two records that straddle the
equator. If the latitude is within tolerance limits, an ascending equatorial crossing
has been found. If not, the location of the midpoint between the recently located
point and one of the previous points on the other side of the equator is determined,
and checked if it is on the equator. This process is repeated until the exact equator
crossing is determined (within tolerance limits).

The c_procRefOrbit routine will then assign a track number to this equator crossing,
and will continue the above process until all records are read or until it starts reading
repeat tracks. The routine will then search through all the equator crossing longi-
tudes to find the first crossing west of (or on) Greenwich. That track will be
assigned a Track number of 1 and its time will be determined. All consecutive tracks

Version 3.0 Page 14-2 October 2002

reforbit_util

GSAS Detailed Design Document

Read Control File [Rd_RefOrh_cntrl)

L
Read Ref Orbit file

w

Find fwa paints straddling an
ascending equatarial arossing

Cretermine exact location of
equatarial cros=ing
Azzign Track numbers

sequentially a5 o ossings are
determined

I

Repeat above 4 processes until
end of file ar repeat tracks

I

FEerumber tracks on bazis of

Track 1 being dosesttrack west
of Greenwich

I

QOutput croszing longitudes and
track numbers to output file

:

End

et Input / Output File M ames

Figure 14-1 Process Flow Diagram

after that (in increasing time order) will be assigned numbers 2, 3, 4, and so on. All
tracks that were to the right of Track 1, will be wrapped around the last track on the
left and numbered accordingly.

October 2002

Page 14-3

Version 3.0

GSAS Detailed Design Document reforbit_util

Version 3.0 Page 14-4 October 2002

Section 15

createGran_util

15.1 Overview

createGran_util is a GSAS utility. It does not use the functionality of the GSAS core
PGE model.

15.2 Function

The purpose of the createGran_util program is to process a given Predicted Orbit file
for all ascending equatorial crossings, and +/- 50 degree latitude crossings. The +/-
50 degree latitude crossings will be designated by segment numbers. The segment
numbers are defined as follows:

= Segment 1 - start of +50 degree latitude crossing (on the ascending portion of
the track),

= Segment 2 - start of +50 degree latitude crossing (on the descending portion of
the track),

= Segment 3 - start of a -50 degree latitude crossing (on the descending portion
of the track),

= Segment 4 - start of a -50 degree latitude crossing (on the ascending portion of
the track).

15.3 Design Approach

= createGran_util does not follow the model GSAS PGE.
= createGran_util does use facilities of the common libraries.

= createGran_util does not perform multi-granule processing or allow for time
selection.

= Implementation of the control files does not follow GSAS PGE conventions.
< No log/metadata (ANCO06) file is created.
15.3.1 Definitions

The reference orbit information will be stored in the Oracle database, and will hence-
forth be referred to as the Reference Orbit table. The Reference Orbit table will con-
tain the following information for each of the Reference Orbits to be used during data
processing:

1) The Repeat groundtrack phase (p):
where,
P=1 for 8-day

October 2002 Page 15-1 Version 3.0

GSAS Detailed Design Document createGran_util

P=2 for 183-day
P=3 for transfer orbit
2) Reference Orbit number (r):

This number will start at 1, and increment each time we receive a new reference
orbit. It will be unique for each set of ground tracks.

3) Instance (K):

The instance will start at 1, and increment by one every time we change from one
reference orbit to another.

4) Cycle (ccc):

The cycle number will restart at 1 every time the instance number, k, changes.
The cycle number will then increment within the instance every time track 1 for
that orbit is reached. It should be noted that most instances will begin in an arbi-
trary track (not 1) because of how we are numbering the tracks.

5) Track (tttt):

Tracks are defined from a reference orbit. Each track begins and ends at the
ascending equator crossing. Tracks will be numbered such that track 1 is the clos-
est track to Greenwich from the west, and then contiguous in time after that. For
transfer orbits, for which we have no predefined reference orbit, track 1 is the first
track for which we have data for that instance, k.

6) Begin Time:
Begin time to use the reference orbit file.
7) End Time:
End time to use the reference orbit file.
8) Begin Track Number:
The first track number that is before the Begin time.
9) Time into Begin Track:

Time into the begin track. This will be difference between the Begin Time of the
reference orbit file and the beginning time of the Begin Track.

10) Number of tracks per cycle:

The number of tracks per cycle for the reference orbit.
11) Begin Rev number:

TBD

12) Track file name:

Version 3.0 Page 15-2 October 2002

createGran_util GSAS Detailed Design Document

The Track file name will be the name of the track file that corresponds to the refer-
ence orbit file. This file will contain all the tracks that are relevant to the reference
orbit file, along with their ascending node longitudes. These tracks will be num-

bered according to the convention mentioned above in 5.

15.3.2 Assumptions

1) A start and end time will be provided by UTCSR for each reference orbit. The
start time will be provided before we get data or a predicted orbit file for that ref-
erence orbit. The end time will be provided at a later date.

2) The reference orbit file will be cataloged in the reference orbit ID table after the
reference orbit tracks are created. The name of the reference orbit track file will
be noted in this table.

3) For transfer orbits we will not receive real reference orbits from UTSCR, and
will need to use the tracks generated from the predicted orbit file. This will be
done by running the reference orbit track program on the predicted orbit file.

4) Each predicted orbit file will be for 48 hours, starting at noon on day n-1, and
going until noon on day n+1, where n is the day for which we want to use the file.
A day starts at 00 hours, and ends at midnight.

5) When a predicted orbit file is received, the reference orbit files pertaining to this
predicted orbit file should already be in the reference orbit ID table.

6) For GLAO0L, 05, and 06, each granule starts at the beginning of each segment
(for all tracks).

7) For GLAO2, and GLAO7, each granule starts at segment 1 of odd track numbers.

8) For GLAO08 through GLAL15, each granule starts at segment 1, when the track
number MODed by 14 equals 1.

9) The start of each new instance, or the start of a new cycle, will automatically
create a new granule.

10) During normal processing, the granule files will start with the first granule
encountered in the predicted orbit file. When there is a new instance, then the
first granule will be the granule preceding the first encountered granule. Its start
time will be the actual start time of the data. The next granule will be the first
encountered granule, with its start time. All subsequent granules will be num-
bered and processed as in the normal case.

11) A predicted orbit file can cover more than one reference orbit.

12) The SCF rev file will always start with rev number 1, and increment for every
rev.

13) The cycle in a transfer orbit will span only one track (as opposed to 119 tracks
in an 8-day orbit file).

October 2002 Page 15-3 Version 3.0

GSAS Detailed Design Document createGran_util

15.4 Input and Output Files

Table 15-1 lists the required inputs to createGran_util. Table 15-2 lists the outputs cre-
ated by createGran_util. See the GLAS Data Products Specifications Volumes or
GLAS Science Data Management Plan for details regarding the these files..

Table 15-1 createGran_util Inputs

File Spec Type Source Short Description
anc26*.dat Dynamic Ancillary UTexas Predicted Orbit file.
anc42*.dat Dynamic Ancillary ISIPS Reference orbit table.
anc07*_06.dat Static Ancillary Science Team Utility error/constants file.
Control File Control ISIPS Operations Control file.

Table 15-2 createGran_util Outputs

File Spec Type Destination Short Description

-none- Dynamic Ancillary I-SIPS Quarter rev file. Contains the
quarter rev start time (in J2000
seconds), repeat ground track
phase, reference orbit number,
instance, product type (1 for
quarter rev granule), cycle num-
ber, track number, and segment
number for all the quarter rev
granules determined from the
predicted orbit file.

-none- Dynamic Ancillary I-SIPS Two rev file. Contains the two
rev start time (in J2000 sec-
onds), repeat ground track
phase, reference orbit number,
instance, product type (2 for two
rev granule), cycle number,
track number, and segment
number for all the two rev gran-
ules determined from the pre-
dicted orbit file..

Version 3.0 Page 15-4 October 2002

createGran_util GSAS Detailed Design Document

Table 15-2 createGran_util Outputs (Continued)

File Spec Type Destination Short Description

-none- Dynamic Ancillary I-SIPS Fourteen rev file. Contains the
fourteen rev start time (in J2000
seconds), repeat ground track
phase, reference orbit number,
instance, product type (3 for two
rev granule), cycle number,
track number, and segment
number for all the fourteen rev
granules determined from the
predicted orbit file.

-none- Dynamic Ancillary I-SIPS SCF rev file. Contains the rela-
tive rev numbers, starting from 1
(during each execution), that
were determined from the given
predicted orbit file.

15.5 Functions

createGran_util includes the following functions:

« rd_GranCntrl_mod.f90: Reads the control file and passes the input and output
file names to the program.

= createGranule_mod.f90: Reads the Predicted Orbit file and determines the
ascending equatorial crossing longitudes and times, as well as the granule
start times and locations (latitudes and longitudes). The results are output to
the two files indicated in the control file.

= ¢_legacyintrpPOD_mod.f90: Interpolates the predicted orbit data to determine
the position vectors for a given time.

e c_calcsploc_mod.f90: Calculates the location (lat, lon) that corresponds to a
given position vector.

15.6 Functional Overview

The driver calls the routine that reads the control file and passes back the input and
output file names. It will then open two scratch files (a rev file, and a granule file).
The LUN numbers of these files, along with the predicted orbit file, will be passed to
the createGranule routine. This routine will read the predicted orbit file, and calcu-
late the ascending equatorial crossing locations and times (which will be written to
the rev file), and the segment locations and times (which will be written to the gran-
ule file). Once the rev and granule files have been populated, the utility will check
to see what the processing mode has been set to. If it is set to REFORB, then the
update_RefTab routine will be called. This routine will read the reference orbit ID
file, and check to see which of the reference orbits do not have a begin track. It will
then check if that reference orbit is a candidate for update. This will be determined

October 2002 Page 15-5 Version 3.0

GSAS Detailed Design Document createGran_util

Fead Control File [Rd_GranCntrl) w

w
Open Zranule and Rew scratch
files

Had Fedidzdamhille.

L
cre gteranule Dz rming axcend Ing @qutlar crazzing
blhns. 3= wellas megmanl lacalkans.

W e 1g soalch Nikes

|

] HE madelhenupdale o arh
I:II.=|I:|I:! aha crgla 1M, 2. and 14 sy
ganuk flkes. and SCF rev Mk

update_FRefT ab calc_granules
a=ad rad arh [0 Mke. pred arb M. v a=d rad arh D MMke. prad arb 1]
arb track Ve .and 3k begin Lact, arblrackl k. and cealg 1rd,]
num.Limz Inla baglnlmask, racgand ke flkes & SCF el
e updatad Inia Inba nd arb 1D (ke

End
Figure 15-1 Process Flow Diagram

by the reference orbit begin time and the predicted orbit start and stop time. The
routine will then determine the closest rev to the reference orbit begin time or the pre-
dicted orbit start time (which ever is greater). The track number corresponding to
the closest rev will be determined from the reference orbit track file. The begin track
number will then be determined, as well as the time into the begin track. Ifitisa
transfer orbit, then the begin track will be set to 1, and the period will be set to the
period of the rev file.

Version 3.0 Page 15-6 October 2002

createGran_util GSAS Detailed Design Document

If the processing mode is set to PREDORB, then the calc_granules routine will be
called. The predicted orbit file will be read, and processing will start from the pre-
dicted orbit start time or the reference orbit begin time (which ever is greater). The
processing will continue until the reference orbit end time (if it is greater that zero), or
the predicted orbit end time (which ever is less). The cycle number will be deter-
mined at the beginning on the basis of the granule start time and the reference orbit
start time. The start track number will also be determined. All subsequent tracks
will be increments of the start track. The 1/4 rev, 2 rev, and 14 rev granules will be
written out to appropriate 1/4 rev, 2 rev, and 14 rev granule files. Using the informa-
tion from the 1/4 rev information file, a SCF rev file will also be created. The first rev
on that file will be rev 1, and its start time will be the start of the actual rev that the 1/
4 rev information file started with. All subsequent revs will be increments of rev 1,
and will ignore any change of reference orbit files during the run.

October 2002 Page 15-7 Version 3.0

GSAS Detailed Design Document createGran_util

Version 3.0 Page 15-8 October 2002

Section 16

atm_anc

16.1 Overview

atm_anc is a GSAS utility. It does not use the functionality of the GSAS core PGE
model.

16.2 Function

Atm_anc reads a GLAO2 product file and computes 532 nm and 1064 nm calibration
coefficients for specified-time segments. The coefficients per segment are output to an
ancillary (ANC36) file which is used in the level 1B atmosphere data processing. A
second ancillary file (ANC44) contains the 532 and 1064 data for clouds that were
detected above about 10 km.

16.3 Design Approach

= atm_anc does not follow the model GSAS PGE.
« atm_anc does use facilities of the common libraries.

= atm_anc does not perform multi-granule processing or allow for time selec-
tion.

= Implementation of the control files does not follow GSAS PGE conventions.
< No log/metadata (ANCO6) file is created.

16.4 Input and Output Files

Table 16-1 lists the required inputs to atm_anc. Table 16-2 lists the outputs created by
atm_anc. See the GLAS Data Products Specifications Volumes or GLAS Science Data
Management Plan for details regarding the these files..

Table 16-1 atm_anc Inputs

File Spec Type Source Short Description
gla02*.dat L1A Product GLAS L1A GLAS L1A Atmosphere product
file.
anc01* ??.dat Dynamic Ancillary met_util Subsetted MET files. There is a

separate MET file per MET data
type. All of the MET files must

be specified.
anc07*_00.dat Static Ancillary Science Team GLAS error file.
anc07*_02.dat Static Ancillary Science Team GLAS atmosphere constants
file.

October 2002 Page 16-1 Version 3.0

GSAS Detailed Design Document

atm_anc

Table 16-1 atm_anc Inputs (Continued)

File Spec Type Source Short Description
ancl8*.dat Static Ancillary Science Team Standard Atmosphere file
anc35*.dat Static Ancillary Science Team Ozone file
Control File Control ISIPS Operations Control file.

Table 16-2 atm_anc Outputs

File Spec Type Destination Short Description
anc36*.dat Dynamic Ancillary atm_util Atmosphere Calibration file.
anc44*.dat Dynamic Ancillary Science Team Atm 1064 Cirrus CAL File

16.5 Functions

atm_anc includes the following functions:

e A _common_mod.f90: Contains common parameters and structures

output file names to the program

files

A _read_control_mod.f90: Reads the control file and passes back the input and

A_prod_reader_mod.f90: Opens and reads the product file
A _open_met_mod.f90: Opens and reads the MET and standard atmosphere

A_open_ozone_mod.f90: Opens and reads the ozone file
A _sum_lidar_mod.f90: Sums and averages lidar data over time segments
A _seg_cal_cofs_mod.f90: Creates 532 nm and 1064 nm calibration coefficients

for each time segment and writes results to an output file

16.6 Functional Overview of Calibration Modules

This portion is taken from the document, "Calibration Processing ATBD v4.1.doc"
written January, 2001 by Steve Palm of the GLAS lidar science team. The atmosphere
ancillary utility was written to perform the algorithms described in this document.
The A_sum_lidar_mod.f90 subroutine performs the functions of the SAM module
described below and the A _seg cal _cofs_mod.f90 subroutine performs the functions
of the CALM module.

16.6.1

Segment Averaging Module (SAM)

The segment averaging reads in the output from GLAO02 and produces segment aver-
ages of the data at two calibration heights. There is an upper calibration height and a
lower calibration height. The upper calibration height is fixed (or at least specified by
input from the constants file), while the lower calibration height is calculated from

Version 3.0

Page 16-2

October 2002

atm_anc GSAS Detailed Design Document

Read Control File [A_read cordrol)

Get Input f Output File W ames

»
Read Error File

»
Read Constants File

w
Open Output File

¥
— M [for Entire Product

L 4
Read Product [A_pod keader)

l

Sum Lidar Walues from Product and Awverage owver
Time Segments [A_ s ikiar]

l

Fead MET and Standard Atmosphere Files
[A_aopean et

¥
FRead Czone File [A_open_arohe)

¥
Calculate C alibr ation Coefficient for each Segment and
Dutput to File (A_seg_cal cofs)

Figure 16-1 Process Flow Diagram

October 2002 Page 16-3 Version 3.0

GSAS Detailed Design Document atm_anc

the minimum average signal between 8 and 15 km. SAM also eliminates profiles that

are cloud

contaminated from the segment average (this only applies to the lower cal-

ibration height). The steps (directly from the ATBD) are given below:

1)

2)
3)

4)

5)

6)

Construct a 1 Hz continuous profile of P’ from -1 to 41 km for the 532 chan-
nel and from -1 to 20 km for the 1064 channel.

Add the background to ‘summing’ variables for each channel

Sum the P’532 data from H1 to H2 km and add it to a ‘summing’ variable.
The values of H1 and H2 will be roughly 29 and 31, respectively, but will be
changeable and read in from the constants file. Increment an ‘upper
counter’.

Check for clouds from 22 km to 8 km above ground. If clouds were not
found for this second, then do the following (number 5 below):

Add the 1 Hz data (each bin) between 8 and 15 km to a ‘summing’ array for
each channel. Increment a ‘lower counter’.

If you have been doing this for t minutes, where t is read in from the con-
stants file (default value: t=10), and at least 50 percent of the expected num-
ber of seconds have been summed (based on the ‘upper counter’), then do
the following:

- compute the average 532 signal from H1 to H2 km for the entire ‘t’
minute segment. Call this P2(532) from the sum generated in step 3
above.

- If the ‘lower counter’ exceeds 50 percent of the expected number of sec-
onds, then perform c, d, and e below. Otherwise, set P1(532) and
P1(1064) to invalid and skip c, d and e. This effectively means that
clouds have made calculations impossible at the lower height.

- Compute the average 532 and 1064 profiles between 15 and 8 km from
the summing array produced in steps 4 and 5 above.

- Find the height of the minimum in the 532 average profile between 8
and 15 km call this hmin - this is the lower calibration height

- Compute the average of the data between hmin+D and hmin-D km for
both the 532 and 1064 channels, where D is in km and is read from the
constants file (default = 1km). Call these P1(532) and P1(1064).

- Compute the average background for the segment for each channel call
these B532 and B1064

- Output to a structure: P1(532), P1(1064), P2(532), B532, B1064, hmin, D,
H1, H2 and: the latitude, longitude and time at ‘m’ points along the seg-
ment, where m is a variable read from the constants file, not to exceed
30. A default value for m is 20. These points would be t/m minutes
apart.

Version 3.0

Page 16-4 October 2002

atm_anc

GSAS Detailed Design Document

7)

8)
9
16.6.2

1. If after ‘t” minutes, less than 50 percent of the expected number of sec-
onds have been summed (based on the ‘upper counter’), then output miss-
ing values (invalid) for P1(532), P1(1064), P2(532), B532, B1064, and the
other output described in 6g above.

Zero out summing variables, summing array and counters
Process next ‘t” minute segment in the same manner
CALibration Module (CALM)

The function of CALM is to compute the calibration constant for each of the segments
output by SAM. The following steps summarize the process:

1)

2)

3)

4)

5)

6)

7)

8)

Read in the output from the segment averaging utility (run after GLA02
completes). This output contains segment averages (maybe 20-30 per gran-
ule) at the two calibration heights. For each segment average, there is
maybe 10-20 latitude/longitude pairs (these are the m points along the
orbit segment, described in 6g above). NOTE: If the SAM and CALM mod-
ules are combined into one module, obviously this step is skipped.

For each segment that has a valid (not invalid) P1(532), P1(1064) or P2(532)
do steps 3-6 below. If all 3 of these are invalid, then there is no need to per-
form steps 3-6, below. In this case, we set the 3 calibration values to invalid
and skip to step 9 below)

At each lat/lon point, compute the average attenuated molecular backscat-
ter at the two calibration heights using ATBD equations 3.2.5 and 3.2.11
(here average means a vertical average — nominally 2 km). This requires
access to the MET data at that lat/lon.

At each lat/lon point, compute the ozone transmission from the top of the
atmosphere to the calibration height (ATBD, equation 3.2.8).

Compute the average attenuated molecular backscatter for the segment at
the two calibration heights and the average ozone transmission for the seg-
ment (average of the values calculated in steps 3 and 4).

Compute the calibration constant as the ratio of the segment signal average
to the average attenuated molecular backscatter times the average ozone
transmission (ATBD, equation 3.2.6).

Repeat steps 2-6 for each of the 20-30 segment averages. This will yield 20-
30 of the following: C1(532) — the lower 532 calibration constant, C1(1064) —
the 1064 calibration constant and C2(532) — the upper 532 calibration con-
stant.

For each segment, write out to a file the following: 1) The start and end time
for the segment, 2) the 3 calibration values (532 upper and lower, and 1064
lower), 3) the standard deviations of the C values (s1(532), s1(1064) and
s2(532)), 4) the three segment signal averages (532 upper and lower, 1064
lower), 5) the segment average attenuated molecular backscatter at the two
calibration heights, 6) the segment average ozone transmission from the top

October 2002 Page 16-5 Version 3.0

GSAS Detailed Design Document

atm_anc

of the atmosphere to the calibration height, 7) the center height and thick-
ness of the upper calibration zone, 8) the center height and thickness of the
lower calibration zone, 9) the segment average 532 background (B532).
Note that if calibration points are thrown out during step 8 above, they are
still output to the file, but have the value of ‘invalid’.

Version 3.0

Page 16-6 October 2002

Section 17

GLAS Meta

17.1 Function

GLAS_Meta is a utility GSAS PGE. It will read product header records and the
ANC45 metadata input files to create inventory-level EOS metadata files.
17.2 Design Approach

The following design criteria are specific to GLAS_Meta

= With the exception of ReadData, GLAS_Meta fully uses the standard routines
from the model GSAS PGE.

= Only the header information is read from the product files.

17.3 Input and Output Files
Table 17-1 lists the required inputs to GLAS_Meta. Table 17-2 lists the outputs created

by GLAS_Meta. See the GLAS Data Products Specifications Volumes or GLAS Sci-
ence Data Management Plan for details regarding the these files...

Table 17-1 GLAS_Meta Inputs

File Spec Type Source Short Description
gla*.dat GLAS Products GSAS GLAS product files.
anc45*.dat Static Ancillary Science Team Product metadata input files.
anc04*.dat Dynamic Ancillary UTexas IERS Polar Motion and Earth

Rotation Data File.

anc46*_0004.dat

Static Ancillary

Science Team

Ancillary metadata input file for
ANCO09.

anc08*.dat

Dynamic Ancillary

UTexas

Precision Orbit file.

anc46* _0008.dat

Static Ancillary

Science Team

Ancillary metadata input file for
ANCO8.

anc09*.dat

Dynamic Ancillary

UTexas

Precision Attitude file.

anc46* _0009.dat

Static Ancillary

Science Team

Ancillary metadata input file for
ANCO09.

anc20*.dat

Dynamic Ancillary

UTexas

Predicted orbit file.

anc46*_0020.dat

Static Ancillary

Science Team

Ancillary metadata input file for
ANC20.

anc22*.dat

Dynamic Ancillary

ISIPS

Track file.

October 2002

Page 17-1

Version 3.0

GSAS Detailed Design Document

GLAS_Meta

Table 17-1 GLAS_Meta Inputs (Continued)

File Spec

Type

Source

Short Description

anc46*_0022.dat

Static Ancillary

Science Team

Ancillary metadata input file for
ANC22.

anc25*.dat

Dynamic Ancillary

Science Team

GPS/UTC conversion file.

anc46*_0025.dat

Static Ancillary

Science Team

Ancillary metadata input file for
ANC25.

anc33*.dat

Dynamic Ancillary

Science Team

UTC time conversion file.

anc46*_0033.dat

Static Ancillary

Science Team

Ancillary metadata input file for
ANC33.

anc37*.dat

Dynamic Ancillary

UTEXAS

Spacecraft CG file.

anc46* _0037.dat

Static Ancillary

Science Team

Ancillary metadata input file for
ANC37.

anc39*.dat

Dynamic Ancillary

UTEXAS

GPS file.

anc46*_0039.dat

Static Ancillary

Science Team

Ancillary metadata input file for
ANC39.

anc07*_0001.dat

Static Ancillary

Science Team

GLAS global constants file.

Control File Control ISIPS Operations Control file.
Table 17-2 GLAS_Meta Output
File Spec Type Destination Short Description

gla*.met Metadata ECS ECS-compliant metadata inven-
tory files.

anc04*.met Metadata ECS IERS Polar Motion and Earth
Rotation metadata File.

anc08*.met Metadata ECS Precision Orbit metadata file.

anc09*.met Metadata ECS Precision Attitude metadata file.

anc20*.met Metadata ECS Predicted orbit metadata file.

anc22*.met Metadata ECS Track metadata file.

anc25*.met Metadata ECS GPS/UTC conversion metadata
file.

anc33*.mett Metadata ECS UTC time conversion metadata
file.

anc37*.met Metadata ECS Spacecraft CG metadata file.

Version 3.0 Page 17-2 October 2002

GLAS_ Meta GSAS Detailed Design Document

Table 17-2 GLAS_Meta Outputs (Continued)

File Spec Type Destination Short Description
anc39*.met Metadata ECS GPS metadata file.
anc06*.txt Dynamic Ancillary ISIPS Operations Standard metadata/processing
log file.

17.4 GLAS_ Meta
The basic processing algorithm for GLAS_Meta is summarized below:
= Initialize (Mainlnit)
= Set the local execution flags (eCntrl_Init)
= Parse the Control File (GetControl)
= Open the specified files (OpenFiles)
= Print the control file (Print_Cntl)
= Read ancillary files (ReadAnc)
= Wirite version info (Write_LibVer, Write_AncVer)
= Loop through available Product and Ancillary Types...

- Parse header and control data using appropriate ANC45/46 information to
create inventory-level metadata.

= Close all files and generate summaries (MainWrap)
17.4.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this docu-
ment.

= Mainlinit

e eCntrl_Init

= GetControl

= OpenFiles

e Print_Cntl

e Write_LibVer
= ReadANC

= Write_AncVer
e MainWrap

October 2002 Page 17-3 Version 3.0

GSAS Detailed Design Document GLAS Meta

17.4.2 Metadata Processing

The process of creating metadata files first begins with the GSAS library routines.
Based on input file availability, the readGLAXx subroutine reads input product/
ancillary header records and control information and parses the data into common
and local header data structures. The common header data structure is further sub-
setted into a metadata substructure by matching header keywords with keywords
found in the appropriate ANC45/46 file. The header is parsed in a very specific way.
It is important to note that the first keyword found which does not match a keyword
in the ANC45/46 files causes the rest of the header information to be stored in the
common_header data structure (NOT in the metadata substructure). It is critical that
the metadata information within the product headers be contiguous and consistent
with the ANC45/ANCA46 files. Inconsistency will prevent the metadata information
from being filled correctly.

After the header information is parsed, WriteMetaFile walks through the ANC45/
ANC46 keywords and finds appropriate values from the header metadata substruc-
ture. It then replaces default values found in the ANC45/ANCA46 file with actual val-
ues contained within the product headers. It writes the keywords and values in a
format specific to EOS inventory-level metadata.

Version 3.0 Page 17-4 October 2002

Section 18

GLAS_APID

GLAS_APID is a utility GSAS PGE. It will read ANC29, ANC32, and/or GLAOQO
APID files and create tab-delimited text output files of the data. Currently, the only
APID supported is APID19. Future versions of this utility will provide support for
APID12 and APID13.

18.1 Function

GLAS_APID creates tab-delimited text output files for ANC29, ANC32 and APID19.
The APID19 data are split among multiple files, the data being separated by sub-
packet type.

18.2 Design Approach

The following design criteria are specific to GLAS_APID

= With the exception of ReadData, GLAS_APID fully uses the standard routines
from the model GSAS PGE.

= Output files are named by adding extensions to the input file name.

= Multiple-input files (of differing types) is supported. Multiple-granule input is
not supported since APID19 output granules must be multiple-granule.

= All products are output at one record per 1 sec. Only the first of the 40/second
shot times is output in APID19.

18.3 Input and Output Files

Table 18-1 lists the required inputs to GLAS_APID. Table 18-2 lists the outputs cre-
ated by GLAS_APID. See the GLAS Data Products Specifications Volumes or GLAS
Science Data Management Plan for details regarding the these files. Those files which
are only required by specific subsystems are noted within the table..

Table 18-1 GLAS_APID Inputs

File Spec Type Source Short Description
gla00*_19.dat Level-0 APID19 EDOS GLAS Level-0 APID19 files.
anc07*_00.dat Static Ancillary Science Team GLAS error file.
anc07*_01.dat Static Ancillary Science Team GLAS global constants file.
anc29*.dat Dynamic Ancillary GLAS L1A Index file correlating APID

times.

October 2002 Page 18-1 Version 3.0

GSAS Detailed Design Document

GLAS_APID

Table 18-1 GLAS_APID Inputs (Continued)

File Spec Type Source Short Description

anc32*.dat Dynamic Ancillary GLAS L1A GPS time correction file used for
precision timing of GLAS data.
Control File Control ISIPS Operations Control file.
Table 18-2 GLAS_APID Outputs

File Spec Type Destination Short Description
gla00*_19.dat.time. | Tab-delimited text. User Time-related APID19 parame-
txt ters.
gla00*_19.dat.ac.tx | Tab-delimited text. User Altimeter-digitizer-related
t APID19 parameters.
gla00*_19.dat.pc.tx | Tab-delimited text. User Photon-counter-related APID19
t parameters.
gla00*_19.dat.cd.tx | Tab-delimited text. User Cloud digitizer-related APID19
t parameters.
gla00*_19.dat.time. | Tab-delimited text. User Time-related APID19 parame-
txt ters.
gla00*_19.dat.gps.t | Tab-delimited text. User GPS-related APID19 parame-
xt ters.
gla00*_19.dat.ct.txt | Tab-delimited text. User C&T-related APID19 parame-

ters.

anc29*.dat.txt Tab-delimited text. Users Index file parameters.
anc32*.dat.txt Tab-delimited text. Users GPS time correction parame-

ters.

anc06*.dat

Dynamic Ancillary

ISIPS Operations

Standard metadata/processing
log file.

18.4 GLAS_APID

The basic processing algorithm is summarized below:

Initialize (Mainlnit)

Set the local execution flags (eCntrl_Init)

Parse the Control File (GetControl)

Open the specified files (OpenFiles)

Print the control file (Print_Cntl)

Read ancillary files (ReadAnc)

Write version info (Write_LibVer, Write_AncVer)

Version 3.0

Page 18-2

October 2002

GLAS_APID GSAS Detailed Design Document

= Write requested ANC29 data
= Write requested ANC32 data
= Loop through available APID Types...
- If APID is input, ProcessAPID
e Close all files and generate summaries (MainWrap
18.4.1 PGE Core Routines

PGE core routines are used exactly as defined in the Core PGE Section of this docu-
ment.

e Mainlinit

e eCntrl_Init

= GetControl

= OpenFiles

e Print_Cntl

= Write_LibVer
= ReadANC

< Write_AncVer
= MainWrap

October 2002 Page 18-3 Version 3.0

GSAS Detailed Design Document GLAS_APID

Version 3.0 Page 18-4 October 2002

All identified scenarios that will be eventually tested.

Appendix A
Processing Scenarios

Table A-1 Reprocessing Scenarios

Scenario Input Output Dependencies Processes
End to end Lidar Level 0, ANC data (POD, | GLAO2, 7- L1A Atm ATBD,
Met, Cal file), Cntrl 11, Meta- L1B Atm ATBD,
data L2 Atm ATBD,
POD interp, Met
interp
End to end Altime- | Level 0, POD, PAD, Met, | GLA05,6,12 L1A Altimeter
ter Cal file, Cntrl -15, Meta- ATBD, L1B
data Waveform ATBD,
L1B Elevation, L2
Elevation, POD,
PAD, Geoloc
Level 1A Altimeter Level O, Cal file, Cntrl GLAO01, L1A Altimeter
Metadata ATBD
Level 1B Waveform | GLAOL, POD, PAD, Cal GLAO5,Met L1B Waveform
file, ANC 19, adata ATBD, POD, PAD,
surf_type_grid, Cntrl Geoloc, surf_type
interp
Level 1B Elevation | GLAO5, GLA09&11 (if GLAO6, Geoid, Tides,
avail), tide coeff, geoid, Metadata Geoloc, Met,
ANC 12, DEM, Met DEM interp, Instr
Range Cor (5)
Reflectance, Atm
Flag
Level 2 Elevation GLAO5, GLAO6, 4 GLA12-15, Geoloc, Instr Cor
Masks Metadata Range Region-
Specific Parame-
ter Calculations
Waveform Algo- GLAO1, GLAO5, Cal file GLAOS5, GLAO6, GLA12- Specific Wave-
rithm changes Metadata 15 (1 or all) form algorithm
(standard, ice process, Geolo-
sheet, seaice, cation
ocean, land)
Replace POD and/ | GLAO5, POD and/or GLAOS5, POD and/or PAD,
or PAD on GLAOS POD Metadata Geolocation
Replace PAD and/ | GLAO6, PAD and/or GLAOS, GLA12-15 PAD and/or POD,
or POD on GLAO6 POD Metadata Geolocation
October 2002 Page A-1 Version 3.0

GSAS Detailed Design Document

Processing Scenarios

Table A-1 Reprocessing Scenarios (Continued)

Scenario Input Output Dependencies Processes
Met changes, redo | GLA06, GLA12-15, Met | GLAOSG, Met Interpola-
Met Cor file GLA12-15, tion, Geolocation
Metadata
Tides Change, GLAO6, GLA12-15, tide GLAO6, Tide algorithms,
redo tide cor coeff GLA12-15, Geolocation
Metadata
Geoid changes GLAO06, GIA12-15, GLAOS, Geoid
Geoid GLA12-15,
Metadata
Standard Instr Cor | GLAO5, GLA06, GLA12- | GLAOQS6, Standard Instr
Changes 15 GLA12-15, Cor Algorithm,
Metadata Geolocation
Region Spec Instr GLAO5, GLAO6, GLA12- | GLAOS, Region Specific
Cor Changes 15 GLA12-15, Instr Cor Algo-
Metadata rithm
Reflectance Algo- GLAO5, GLA06, GLA12- | GLAOS, Reflectance
rithm changes 15 GLA12-15, ATBD
Metadata
Change GLAO6 GLAO5, GLAO6, GLA12- | GLAOS, Range Instr Cor
based on WF Algo- | 15 GLA12-15, Calculation,
rithm changing for Metadata Geolocation
GLAO5
Replace PAD and/ | GLA12-15, PAD and/or GLA12-15, POD and or PAD,
or POD on GLA12- | POD Metadata Geolocation
15
Creation of GLAO7 GLAO02, Met, POD, 400 GLAO7, Interp POD,
BackScatter Pro- sec avg file Metadata Interp Met, Molec
files BackScat Pro-
files, Calib Coeff,
1064 BackScat
Profiles, 532
BackScat Profiles
Creation of GLA0O8 | GLAO7, Constants, GLAO08 1and 4 sec

Aerosol Layers

GLAO09

BackScat aver-
ages, PBL/Aero-
sol <20 km
layers, 20-40 km
aerosol layers

Version 3.0

Page A-2

October 2002

Processing Scenarios

GSAS Detailed Design Document

Table A-1 Reprocessing Scenarios (Continued)

Scenario Input Output Dependencies Processes
Creation of GLA09 | GLAO7, Constants GLA09 1 and 4 sec
Cloud Layers BackScat aver-

ages, Cloud Lay-
ers
Creation of GLA10 | GLAO7, GLA08, GLA09, | GLA10, Cloud Optical
Cross Section Pro- | Constants GLA11 Properties, Aero-

files and Creation
of GLA11 Optical
Depths

sol Optical Prop-
erties, 1 and 4
sec BackScat
averages

October 2002

Page A-3

Version 3.0

GSAS Detailed Design Document Processing Scenarios

Version 3.0 Page A-4 October 2002

Appendix B
Makefiles and Libraries

Developers are “strongly” encouraged to use standard GSAS libraries and makefiles.
GSAS libraries leverage existing code to speed development and ease maintenance.
Makefiles ensure common compiler flags and allow developers to deliver their soft-
ware as part of a general GSAS delivery.

B.1 Compilation

Note: This documentation is specific to the GLAS development environment. It assumes that
the core directory of the GLAS software is located at “/glas/vob”.

B.1.1 To compile the whole distribution

cd /gl as/vob/src
nmake

B.1.2 To compile only the libraries

cd /gl as/vob/src
make |ibs

B.1.3 To recompile a library in debug mode

cd /glas/vob/src/library_directory
make debug

B.1.4 To recompile alibrary in optimized mode

cd /glas/vob/src/library_directory
nmake fast

B.1.5 To compile a specific executable
(requires that the libraries are compiled beforehand)

cd /gl as/vob/src/executabl e _directory
nmake

B.1.6 To compile a specific executable in debug mode
(requires that the libraries are compiled beforehand)

cd /gl as/vob/src/executabl e _directory
make debug

B.1.7 To compile a specific executable in optimized mode
(requires that the libraries are compiled beforehand)

cd /gl as/vob/src/executabl e _directory
nmake fast

October 2002 Page B-1 Version 3.0

GSAS Detailed Design Document Makefiles and Libraries

B.2 Using Libraries
This section details the use of libraries, both at development and run time stages.
B.2.1 Development

To use a library, you need to include the path and the library name in your Makefile.
The following example shows how to use the platform_lib (which is stored in the /
glas/vob/src/lib directory) to compile a test program:

f90 test.f90 -L/glas/vob/src/lib -Iplatform -otest

The next example show how to use the file and anc libraries as well. (A side note: By
unix convention the full filenames are libplatform.sl, libfile.sl, and libanc.sl, however
when they are specified with the -l argument on the compile line, the “lib” and “.sI”

parts are dropped).

f90 test.f90 -L/glas/vob/src/lib -Iplatform-lanc -1file —otest

ORDER IS IMPORTANT. See Foundation Libraries section of this document to verify
that the libraries are specified in the correct order on the compile line.

B.2.2 Runtime

GSAS libraries are dynamically-linked shared libraries. What this means is that the
libraries are not statically linked with executables, but dynamically linked on
demand at runtime. With this in mind, it is important that the executable be able to
determine the location of the libraries at runtime. During compilation, the location of
the libraries is stored in the executable code. If the executable is moved, and the loca-
tion is relative, the libraries will not be found upon execution. In this case, a devel-
oper should use the following procedure to allow executables to link to dynamic
libraries, no matter their location.

chatr +s enabl e <execut abl e_name>
setenv SHLI B_PATH <pat hnarme to |ibraries>

This procedure tells the executable to use the SHLIB_PATH environmental variable
to find its libraries, then sets that variable to the path of the shared libraries.

The other way of handling this is to link the libraries into the current directory. The
executable is set to look in the current directories first for its libraries.

B.3 Some Development Hints

= |If you want to use the GLAS libraries, simply compile them (as above) and
include the appropriate lines in your makefile (again, as above).

= As long as you model the Makefile for your executable after that of the GLAS
PGEs, you will be using shared libraries and will not need to recompile your
executable after recompiling a library - unless global data structures or sub-
routine arguments are changed.

Version 3.0 Page B-2 October 2002

Makefiles and Libraries GSAS Detailed Design Document

= |If you would like to debug the routines in a specific library, cd to that directory
and do a make clean; make debug. Next time you run your executable (you
don’t have to recompile it), it will run with the debug version of the library.

= Using the —g and +check=all flags (included with make debug) is a good idea
during testing.

= If you want to get fancy and create a custom makefile for a special purpose,
simply use another name for the makefile and use make —f mymakefile.

< You may add custom options to the standard makefiles by putting the options
on the gF90_AUX_FLAGS line. For example, if you wish to define a custom
flag (DEBUG_TIME) for debugging purposes, define it as follows:

gF90_AUX_FLAGS= - DDEBUG TI ME

B.4 Makefile Details

This is an attempt to explain how GLAS makefiles work. This assumes the reader is
somewhat familiar with the GLAS VOB layout.

B.5 Types of Makefiles
There are different types of makefiles. This section identifies each.
B.5.1 The Main Makefile

This makefile is located at /glas/vob/Makefile. This makefile builds all GSAS soft-
ware and installs the binaries and libs in the /glas/vob/bin and /glas/vob/lib direc-
tories. This makefile is primarily used during production, not development.
Developers should always use/link to the binaries and libraries within the src direc-
tory, not those in the /bin and /lib directories since the top-level makefile is the only
one which populates such directories.

B.5.2 The src Makefile

This makefile is located at /glas/vob/src/Makefile. It is the main development
makefile which will recursively build all GSAS deliverable software. There are
options to:

= build all deliverable GLAS Libraries (make libs)
< build all deliverable GLAS binaries (make progs)
< build all deliverable Libraries and binaries (make all) -the default
= build all deliverable Libraries and binaries in debug mode (make debug)
< build all deliverable Libraries and binaries in optimization mode (make fast)
= clean up all object code and module files (make clean)
B.5.3 Library Makefiles

These makefiles are located at src/common_libs/*/Makefile. There are options to:

October 2002 Page B-3 Version 3.0

GSAS Detailed Design Document Makefiles and Libraries

= Compile library source and install library (make)

e Compile library source in debug mode and install library (make debug)

= Compile library source in optimization mode and install library (make fast)
The libraries are derived objects and installed into /glas/vob/src/lib
B.5.4 Subsystem Makefiles

These makefiles are located at /glas/vob/src/*_lib/Makefile (where * = |1a, atm,
elev, wf)

= Compile library source and install library (make)
e Compile library source in debug mode and install library (make debug)
= Compile library source in optimization mode and install library (make fast)

The libraries are derived objects and installed into /glas/vob/src/lib. When
installed, the libraries are stored in /glas/vob/lib.

B.5.5 Exec makefiles

These makefiles are located in the directory of each delivered executable: src/
GLAS_L1A/Makefile, src/GLAS_LOproc/Makefile, etc. There are options to:

e Compile binary source (make)
= Compile binary source in debug mode (make debug)
= Compile binary source in optimization mode (make fast)

The executables are derived objects and installed into /glas/vob/bin.

B.6 A Sample Heavily-Commented Makefile

NAME: Makefil e
FUNCTI O\ Makefile for GLAS Exec

FI LES ACCESSED: See TARCETS definition.
ALL D RECTCRY SPEC FI CATI ONS SHOULD BE RELATI VE, NOT ABSCLUTE, PATHS! !

COMMENTS: None.
H STCRY:
1998 Decenber 18, JLee, Initial Version
1999 January 14, JlLee, Ported to HP
1999 Cct ober 18, JLee Renoved default DEBUG renoved recursion
1999 Cct ober 24, Jlee Set the bit to do SH.IB PATH
----- Set filepaths

PATHLVL is the path you use to get to /glas/vob/src, but it should
be a relative path so that we can conpile outside the VOB

HHHFHHFHFHHHFHFEHFEHHHHHFHFHEFEHRHR

PATHLVL=. .

Version 3.0 Page B-4 October 2002

Makefiles and Libraries GSAS Detailed Design Document

UTILD R is where the AAS nakefile includes can be found. These files
contain settings specific to GLAS Makefil es.
/glas/vob/cc_util is the actual path.
I LDl R=$(PATHLML) /. . / cc_uti |

I nclude Standard GQ.AS Definitions

###S#####

i ncl ude $(UTI LD R/ make_def s. $(BRAND)

i ncl ude $(UTI LD R)/ nake_defs. i ncl

#

Define libraries we will need. They are located in /glas/vob/src/lib.
This path is pre-defined (relatively) in the GLAS include files.

The actual filenane for —Iwf is libwf.sl, -fileis libfile.sl

#

LIBS= -llla -latm-Iw -lelev -Iprod -Ifile -Itime -lanc -lcntrl \
-lerr —Iplatform

#

Define the Production directory where we will copy the binary upon
creating a production build

#

PRCODDI R=$(PATHLVL/ . . / bi n)

#

Define the target binary

#

TARCGET=A.AS_Exec

#

Define the objects will are needed by the Target

#

CBJECTS= \
tl Defs nod.o fOntl _nmod. o et _nod. o\
Mai nlnit_nod. o ReadData_nod. o Get Control _nod. o \
d oseFil es_nod. o penFiles_nod.o WitelLlA nod.o WiteW nod.o \
WiteAmnod.o WiteH ev_nod. o Mai nWap_nod. o \
ReadAnc_nod. o L1AMyr_nod. o H evMyr _nmod. o WWMyr _nod. o At nigr _nod. o \
vers_exec_nod. o GLAS Exec. o

#

Qustom Rul es

#

gF90_AUX_FLAGS=

#

Make our Target by defaul t

#

all: $(TARCET)

#

TARCET, LIBS and OBJECTS are defined in this nakefile.

LINK_EXE f90 and FFLAGS are defined in the GAS incl udes.

chart +s enable allows the executable to use the SH.IB PATH to
look for its shared libraries.

#

$(TARCET): $(CBIECTS) Makefile

$(LI NK_EXE. f90) $(FFLAGS) -0 $(TARGET) $(CBIECTS) $(LIBS); \
chatr +s enabl e $(TARGET)

#

I ncl ude Standard G.AS Dependenci es

#

i ncl ude $(UTI LD R/ make_depends. i ncl

October 2002 Page B-5 Version 3.0

GSAS Detailed Design Document Makefiles and Libraries

#
End of MakeFile
#

Version 3.0 Page B-6 October 2002

Abbreviations & Acronyms

A2P Algorithm-to-Product Conversion
ALT Altimeter or Altimetry, also designation for the EOS-Altimeter spacecraft series
ANCxx GLAS Ancillary Data Files
APID GLAS Level-0 Data file
ATBD Algorithm Theoretical Basis Document
ATM Atmosphere
CCB Change Control Board
ClearCase GSAS version tracking software
CR Change Request
DAAC Distributed Active Archive Center
DEM Digital Elevation Model
DFD Data Flow Diagram
DLT Digital Linear Tape
EDOS EOS Data and Operations System
EDS Expedited Data Set
ELEV Elevation
EOC EOS Operating Center
EOS NASA Earth Observing System Mission Program
EOSDIS Earth Observing System Data and Information System
GB Gigabyte
GDS GLAS Ground Data System
GLAS Geoscience Laser Altimeter System instrument or investigation
GLAXX GLAS Science Data Product Files
GLOP GLAS Level-0 PGE (correctly called GLAS_LOproc)
GPS Global Positioning System
GSAS GLAS Science Algorithm Software
GSFC NASA Goddard Space Flight Center at Greenbelt, Maryland
GSFC/WFF NASA Goddard Space Flight Center/Wallops Flight Facility at Wallops Island,
Virginia
October 2002 Page AB-1 Version 3.0

GSAS Detailed Design Document Abbreviations & Acronyms

HDF Hierarchal Data Format

HDF-EOS EOS-specific Hierarcial Data Format

I-SIPS Icesat Science Investigator Led Processing System
/0 Input/Output

ICESAT Ice, Cloud and Land Elevation Satellite

ID Identification

ID Identification

IEEE Institute for Electronics and Electrical Engineering
ISF Instrument Support Facility

IST Instrument Star Tracker

KB Kilobyte

LO Level O

L1A Level-1A

L1B Level-1 B

L2 Level-2

LASER Light Amplification by Stimulated Emission of Radiation
LASER Light Amplification by Stimulated Emission of Radiation
LIDAR Light Detection and Ranging

LIDAR Light Detection and Ranging

LPA Laser Pointing Array

LRS Laser Reference System

MB Megabyte

MET (context sensitive) Mission Elapsed Time or Meteorological
MOSS NEED DEFINITION

N/A or NA Not (/) Applicable

NASA National Aeronautics and Space Administration
NOAA National Oceanic and Atmospheric Administration
P2A Product-to-Algorithm Conversion

PAD Precision Attitude Determination

PDF Portable Document Format

PDS Production Data Set

PGE Product Generation Executable

Version 3.0 Page AB-2 October 2002

Abbreviations & Acronyms GSAS Detailed Design Document

POD Precision Orbit Determination

POD Precision Orbit Determination

PR Problem Report

QA Quality Assessment

QAP Quality Assessment Processing

SC Structure Chart

SCF Science Computing Facility

SDMP Science Data Management Plan

SDMS Scheduling and Data Management System

SDP Standard Data Products

SRS Stellar Reference System

SSMP Science Software Management Plan

SSRF Science Software Requirements Document

TBD to be determined, to be done, or to be developed

TBD to be determined, to be done, or to be developed

UNIX the operating system jointly developed by the AT&T Bell Laboratories and the
University of California-Berkeley System Division

uTC Universal Time Correlation

WF Waveform

October 2002 Page AB-3 Version 3.0

GSAS Detailed Design Document Abbreviations & Acronyms

Version 3.0 Page AB-4 October 2002

aggregate

array

file

header

item

label

Level O

Level 1A

Glossary

A collection, assemblage, or grouping of distinct data parts together to make a
whole. It is generally used to indicate the grouping of GLAS data items,
arrays, elements, and EOS parameters into a data record. For example, the
collection of Level 1B EOS Data Parameters gathered to form a one-second
Level 1B data record. It could be used to represent groupings of various GLAS
data entities such as data items aggregated as an array, data items and arrays
aggregated into a GLAS Data Element, GLAS Data Elements aggregated as
an EOS Data Parameter, or EOS Data Parameters aggregated into a Data
Product record.

An ordered arrangement of homogenous data items that may either be syn-
chronous or asynchronous. An array of data items usually implies the ability to
access individual data items or members of the array by an index. An array of
GLAS data items might represent the three coordinates of a georeference
location, a collection of values at a rate, or a collection of values describing an
altimeter waveform.

A collection of data stored as records and terminated by a physical or logical
end-of-file (EOF) marker. The term usually applies to the collection within a
storage device or storage media such as a disk file or a tape file. Loosely
employed it is used to indicate a collection of GLAS data records without a
standard label. For the Level 1A Data Product, the file would constitute the
collection of one-second Level 1A data records generated in the SDPS work-
ing storage for a single pass.

A text and/or binary label or information record, record set, or block, prefacing
a data record, record set, or a file. A header usually contains identifying or
descriptive information, and may sometimes be embedded within a record
rather than attached as a prefix.

Specifically, a data item. A discrete, non-decomposable unit of data, usually a
single word or value in a data record, or a single value from a data array. The
representation of a single GLAS data value within a data array or a GLAS Data
Element.

The text and/or binary information records, record set, block, header, or head-
ers prefacing a data file or linked to a data file sufficient to form a labeled data
product. A standard label may imply a standard data product. A label may
consist of a single header as well as multiple headers and markers depending
on the defining authority.

The level designation applied to an EOS data product that consists of raw
instrument data, recorded at the original resolution, in time order, with any
duplicate or redundant data packets removed.

The level designation applied to an EOS data product that consists of recon-
structed, unprocessed Level 0 instrument data, recorded at the full resolution
with time referenced data records, in time order. The data are annotated with
ancillary information including radiometric and geometric calibration coeffi-
cients, and georeferencing parameter data (i.e., ephemeris data). The
included, computed coefficients and parameter data have not however been
applied to correct the Level 0 instrument data contents.

October 2002

Page GL-1 Version 3.0

GSAS Detailed Design Document Glossary

Level 1B

Level 2

Level 3

Level 4

metadata

orbit

model

module

parameter

pass

PDL

process

The level designation applied to an EOS data product that consists of Level 1A
data that have been radiometrically corrected, processed from raw data into
sensor data units, and have been geolocated according to applied georefer-
encing data.

The level designation applied to an EOS data product that consists of derived
geophysical data values, recorded at the same resolution, time order, and geo-
reference location as the Level 1A or Level 1B data.

The level designation applied to an EOS data product that consists of geo-
physical data values derived from Level 1 or Level 2 data, recorded at a tem-
porally or spatially resampled resolution.

The level designation applied to an EOS data product that consists of data
from modeled output or resultant analysis of lower level data that are not
directly derived by the GLAS instrument and supplemental sensors.

The textual information supplied as supplemental, descriptive information to a
data product. It may consist of fixed or variable length records of ASCII data
describing files, records, parameters, elements, items, formats, etc., that may
serve as catalog, data base, keyword/value, header, or label data. This data
may be parsable and searchable by some tool or utility program.

The passage of time and spacecraft travel signifying a complete journey
around a celestial or terrestrial body. For GLAS and the EOS ALT-L spacecraft
each orbit starts at the time when the spacecraft is on the equator traveling
toward the North Pole, continues through the equator crossing as the space-
craft ground track moves toward the South Pole, and terminates when the
spacecraft has reached the equator moving northward from the South Polar
region.

A graphical representation of a system.

A collection of program statements with four basic attributes: input and output,
function, mechanics and internal data.

Specifically, an EOS Data Parameter. This is a defining, controlling, or con-
straining data unit associated with a EOS science community approved algo-
rithm. It is identified by an EOS Parameter Number and Parameter Name. An
EOS Data Parameter within the GLAS Data Product is composed of one or
more GLAS Data Elements

A sub-segment of an orbit, it may consist of the ascending or descending por-
tion of an orbit (e.g., a descending pass would consist of the ground track seg-
ment beginning with the northernmost point of travel through the following
southernmost point of travel), or the segment above or below the equator; for
GLAS the pass is identified as either the northern or southern hemisphere por-
tion of the ground track on any orbit

Program Design Language (Pseudocode). A language tool used for module
programming and specification. It is at a higher level than any existing com-
pilable language.

An activity on a dataflow diagram that transforms input data flow(s) into output
data flow(s).

Version 3.0

Page GL-2 October 2002

Glossary

GSAS Detailed Design Document

product

program

record

Scenario

Standard Data
Product

State Transition
Diagram

Stub

Structure Chart

Structured Design

Specifically, the Data Product or the EOS Data Product. This is implicitly the
labeled data product or the data product as produced by software on the
SDPS or SCF. A GLAS data product refers to the data file or record collection
either prefaced with a product label or standard formatted data label or linked
to a product label or standard formatted data label file. Loosely used, it may
indicate a single pass file aggregation, or the entire set of product files con-
tained in a data repository.

The smallest set of computer instructions that can be executed as a stand-
alone unit

A specific organization or aggregate of data items. It represents the collection
of EOS Data Parameters within a given time interval, such as a one-second
data record. It is the first level decomposition of a product file.

A single execution path for a process.

Specifically, a GLAS Standard Data Product. It represents an EOS ALT-L/
GLAS Data Product produced on the EOSDIS SDPS for GLAS data product
generation or within the GLAS Science Computing Facility using EOS science
community approved algorithms. It is routinely produced and is intended to be
archived in the EOSDIS data repository for EOS user community-wide access
and retrieval.

Graphical representation of one or more scenarios.

(alias dummy module) a primitive implementation of a subordinate module,
which is normally used in the top-down testing of superordinate (higher) mod-
ules.

A graphical tool for depicting the partitioning of a system into modules, the
hierarchy and organization of those modules, and the communication inter-
faces between the modules.

The development of a blueprint of a computer system solution to a problem,
having the same components and interrelationships amount the components
as the original problem has.

Subroutine A program that is called by another program

variable Usually a reference in a computer program to a storage location, i.e., a place
to contain or hold the value of a data item.

October 2002 Page GL-3 Version 3.0

GSAS Detailed Design Document Glossary

Version 3.0 Page GL-4 October 2002

	Volume #
	GSAS Detailed Design Document
	Version 3.0
	Jeffrey Lee/Raytheon ITSS Observational Science Branch Laboratory for Hydrospheric Processes NASA...
	October 2002

	Foreword
	Table of Contents
	Foreword iii
	Table of Contents v
	List of Figures ix
	List of Tables xi
	Section 1 Introduction
	1.1 Identification of Document 1-1
	1.2 Scope of Document 1-1
	1.3 Purpose and Objectives of Document 1-1
	1.4 Document Status and Schedule 1-1
	1.5 Document Organization 1-1
	1.6 Document Change History 1-2

	Section 2 Related Documentation
	2.1 Parent Documents 2-1
	2.2 Applicable Documents 2-1
	2.3 Information Documents 2-2

	Section 3 Design Issues
	3.1 Requirements 3-1
	3.2 Single vs. Multiple Executables 3-1
	3.3 Software Reuse 3-2
	3.4 I/O and Unit Conversion 3-2
	3.5 Reprocessing and Pass-Thrus 3-2
	3.6 Data Buffering 3-3

	Section 4 Design Overview
	4.1 GSAS Design Overview 4-1
	4.2 PGEs 4-1
	4.3 Files 4-3
	4.4 Science Algorithms 4-3
	4.5 Utilities 4-3

	Section 5 Foundation Libraries
	5.1 The Platform Library (platform_lib) 5-1
	5.2 The Control Library (cntrl_lib) 5-2
	5.3 The Error Library (err_lib) 5-3
	5.4 The Math Library (math_lib) 5-4
	5.5 The Ancillary Library (anc_lib) 5-4
	5.6 The File Library (file_lib) 5-6
	5.7 The Time Library (time_lib) 5-6
	5.8 The Product Library (prod_lib) 5-7
	5.9 The Exec Library (exec_lib) 5-8

	Section 6 Common Functionality
	6.1 Control File Parsing 6-1
	6.2 ANC07 Constants Files 6-5
	6.3 Invalid Values and Error/Status Reporting 6-6
	6.4 ANC06 Metadata/Log File 6-9
	6.5 Product Internal Data Storage, Conversion and I/O 6-9
	6.6 Product Headers 6-12
	6.7 Summary 6-13

	Section 7 GSAS Core PGEs
	7.1 Function 7-1
	7.2 Requirements 7-1
	7.3 Approach 7-1
	7.4 Design 7-2

	Section 8 GLAS_L0proc
	8.1 Overview 8-1
	8.2 Function 8-1
	8.3 Approach 8-2
	8.4 Input and Output Files 8-2
	8.5 Design 8-7

	Section 9 GLAS_L1A
	9.1 Overview 9-1
	9.2 Function 9-1
	9.3 Design Approach 9-1
	9.4 Input and Output Files 9-2
	9.5 GLAS_L1A PGE 9-2
	9.6 L1A Manager (L1A_Mgr) 9-4
	9.7 PGE/Manager Implementation Details 9-6
	9.8 L1A_Subsystem 9-8

	Section 10 GLAS_Alt
	10.1 Function 10-1
	10.2 Design Approach 10-1
	10.3 Input and Output Files 10-1
	10.4 GLAS_Alt 10-4
	10.5 Waveform Manager (WF_Mgr) 10-5
	10.6 Elevation Manager (Elev_Mgr) 10-8
	10.7 PGE/Manager Implementation Details 10-9
	10.8 WF_Subsystem 10-20
	10.9 Elev_Subsystem 10-37

	Section 11 GLAS_Atm
	11.1 Overview 11-1
	11.2 Function 11-1
	11.3 Design Approach 11-1
	11.4 Input and Output Files 11-2
	11.5 Functions 11-4
	11.6 Atm_Subsystem 11-9

	Section 12 GLAS_Reader
	12.1 Function 12-1
	12.2 Design Approach 12-1
	12.3 Input and Output Files 12-1
	12.4 GLAS_Reader 12-3

	Section 13 met_util
	13.1 Overview 13-1
	13.2 Function 13-1
	13.3 Design Approach 13-1
	13.4 Input and Output Files 13-1
	13.5 Functions 13-1
	13.6 Functional Overview 13-2

	Section 14 reforbit_util
	14.1 Overview 14-1
	14.2 Function 14-1
	14.3 Design Approach 14-1
	14.4 Input and Output Files 14-1
	14.5 Functions 14-1
	14.6 Functional Overview 14-2

	Section 15 createGran_util
	15.1 Overview 15-1
	15.2 Function 15-1
	15.3 Design Approach 15-1
	15.4 Input and Output Files 15-4
	15.5 Functions 15-5
	15.6 Functional Overview 15-5

	Section 16 atm_anc
	16.1 Overview 16-1
	16.2 Function 16-1
	16.3 Design Approach 16-1
	16.4 Input and Output Files 16-1
	16.5 Functions 16-2
	16.6 Functional Overview of Calibration Modules 16-2

	Section 17 GLAS_Meta
	17.1 Function 17-1
	17.2 Design Approach 17-1
	17.3 Input and Output Files 17-1
	17.4 GLAS_Meta 17-3

	Section 18 GLAS_APID
	18.1 Function 18-1
	18.2 Design Approach 18-1
	18.3 Input and Output Files 18-1
	18.4 GLAS_APID 18-2

	Appendix A Processing Scenarios
	Appendix B Makefiles and Libraries
	B.1 Compilation B-1
	B.2 Using Libraries B-2
	B.3 Some Development Hints B-2
	B.4 Makefile Details B-3
	B.5 Types of Makefiles B-3
	B.6 A Sample Heavily-Commented Makefile B-4
	Abbreviations & Acronyms AB-1
	Glossary GL-1

	List of Figures
	List of Tables
	Introduction
	1.1 Identification of Document
	1.2 Scope of Document
	Figure 1-1 I-SIPS Software Top-Level Decomposition

	1.3 Purpose and Objectives of Document
	1.4 Document Status and Schedule
	1.5 Document Organization
	1.6 Document Change History

	Related Documentation
	2.1 Parent Documents
	2.2 Applicable Documents
	2.3 Information Documents

	Design Issues
	3.1 Requirements
	3.2 Single vs. Multiple Executables
	3.3 Software Reuse
	3.4 I/O and Unit Conversion
	3.5 Reprocessing and Pass-Thrus
	3.6 Data Buffering

	Design Overview
	4.1 GSAS Design Overview
	Figure 4-1 GSAS Layers

	4.2 PGEs
	Figure 4-2 Simplified GSAS Data Flow Diagram

	4.3 Files
	4.4 Science Algorithms
	Table 4-1 Subsystem, Libraries and Products

	4.5 Utilities

	Foundation Libraries
	Table 5-1 Library Inter-dependencies
	5.1 The Platform Library (platform_lib)
	Table 5-2 platform_lib Modules

	5.2 The Control Library (cntrl_lib)
	Table 5-3 cntrl_lib Modules�

	5.3 The Error Library (err_lib)
	Table 5-4 err_lib Modules�

	5.4 The Math Library (math_lib)
	Table 5-5 math_lib Modules�

	5.5 The Ancillary Library (anc_lib)
	Table 5-6 anc_lib Modules�

	5.6 The File Library (file_lib)
	Table 5-7 file_lib Modules�

	5.7 The Time Library (time_lib)
	Table 5-8 time_lib Modules�

	5.8 The Product Library (prod_lib)
	Table 5-9 prod_lib Modules�

	5.9 The Exec Library (exec_lib)
	Table 5-10 fexec_lib Modules�

	Common Functionality
	6.1 Control File Parsing
	Table 6-1 Required Single-Instance Keywords
	Table 6-2 Optional Multiple-Instance Keywords �
	6.1.1 PASSID Specification
	Table 6-3 PASSID Control Line Elements�
	Table 6-4 passid Field Description

	6.1.2 Input/Output File Specification
	Table 6-5 File Segment and Version Fields

	6.1.3 Input Data Time Selection
	6.1.4 Output Data Time Selection
	6.1.5 Execution scenarios

	6.2 ANC07 Constants Files
	6.3 Invalid Values and Error/Status Reporting
	6.3.1 Invalid Values
	Table 6-6 Invalid Values

	6.3.2 Exit Status
	Table 6-7 PGE Exit Status Codes �

	6.3.3 Error and Status Reporting
	Figure 6-1 Error Ancillary File Format
	Table 6-8 Error String Format �
	Table 6-9 Error Sections �
	Table 6-10 Error Severity Codes �

	6.4 ANC06 Metadata/Log File
	6.5 Product Internal Data Storage, Conversion and I/O
	6.5.1 Product Modules
	Table 6-11 Product Module Functionality

	6.5.2 Internal Product Data Storage
	6.5.3 Product Input/Output
	6.5.4 Product-to-Algorithm Conversion (P2A)
	6.5.5 Pass-Thru
	6.5.6 Managers
	6.5.7 Algorithm to Product Conversion (A2P)

	6.6 Product Headers
	6.7 Summary

	GSAS Core PGEs
	7.1 Function
	7.2 Requirements
	7.3 Approach
	7.4 Design
	Figure 7-1 Top-Level Structure Chart
	7.4.1 MainInit
	Figure 7-2 MainInit
	7.4.1.1 Error_Boot
	7.4.1.2 fCntl_Init
	7.4.1.3 GLAxx_scal_init, GLAxx_prod_init, GLAxx_alg_init

	7.4.2 eCntl_Init
	7.4.3 GetControl
	Figure 7-3 GetControl
	7.4.3.1 Init_StdCntl
	7.4.3.2 OpenCF
	7.4.3.3 Parse_StdCntl
	7.4.3.4 Sanity_Check

	7.4.4 OpenFiles
	7.4.5 PrintCntl
	7.4.6 Write_LibVer
	7.4.7 ReadAnc
	7.4.8 Write_AncVer
	7.4.9 ReadData
	Figure 7-4 ReadData
	7.4.9.1 ReadRecord
	7.4.9.2 next_granule
	7.4.9.3 InvalidRec

	7.4.10 Managers
	7.4.11 MainWrap

	GLAS_L0proc
	8.1 Overview
	8.2 Function
	8.3 Approach
	8.4 Input and Output Files
	Table 8-1 GLAS_L0proc Inputs
	Table 8-2 GLAS_L0proc Outputs
	8.4.1 GLA00 APID Files
	Table 8-3 Supported APIDs�

	8.4.2 ANC33 MET Counter to UTC Conversion File
	Table 8-4 ANC33 Field Descriptions�

	8.4.3 Control File
	8.4.4 ANC29 Index File
	Table 8-5 ANC29 Format/Description

	8.4.5 ANC32 GPS File
	Table 8-6 ANC32 Format/Description �

	8.5 Design
	Figure 8-1 GLAS_L0proc Structure Chart
	8.5.1 PGE Core Routines
	8.5.2 ReadGLOP
	8.5.3 sort_gla00_index
	8.5.4 sort_gps
	8.5.5 utc_time_conversion
	8.5.6 Index_Grouping

	GLAS_L1A
	9.1 Overview
	9.2 Function
	9.3 Design Approach
	9.4 Input and Output Files
	Table 9-1 GLAS_L1A Inputs
	Table 9-2 GLAS_L1A Outputs

	9.5 GLAS_L1A PGE
	Figure 9-1 GLAS_L1A Structure Chart
	9.5.1 PGE Core Routines

	9.6 L1A Manager (L1A_Mgr)
	Figure 9-2 L1A_Mgr Structure Chart
	Figure 9-3 L1A Manager Flow Chart

	9.7 PGE/Manager Implementation Details
	9.7.1 ANC29/ANC32/GLA00 Input
	9.7.2 Missing APIDs

	9.8 L1A_Subsystem
	Figure 9-4 Level 1A Computations
	9.8.1 Subsystem Design Decisions and Assumptions
	9.8.2 DFDs and their Descriptions
	9.8.2.1 Level 1A Altimeter Processing
	9.8.2.2 L1A Atmosphere Processing
	9.8.2.3 Engineering Data Processing
	9.8.2.4 Collect Instrument and S/C Position and Attitude
	9.8.2.5 Calculate Shot Time
	9.8.2.6 Get Predicted Location

	GLAS_Alt
	10.1 Function
	10.2 Design Approach
	10.3 Input and Output Files
	Table 10-1 GLAS_Alt Inputs�
	Table 10-2 GLAS_Alt Outputs �

	10.4 GLAS_Alt
	Figure 10-1 GLAS_Alt Structure Chart
	10.4.1 PGE Core Routines

	10.5 Waveform Manager (WF_Mgr)
	Figure 10-2 WF_Mgr Structure Chart
	Figure 10-3 WF Manager Flowchart

	10.6 Elevation Manager (Elev_Mgr)
	Figure 10-4 Elev_Mgr Structure Chart
	Figure 10-5 Elev_Mgr Flow Chart �

	10.7 PGE/Manager Implementation Details
	10.7.1 GLA05 Requirement

	10.8 WF_Subsystem
	10.8.1 DFDs and their Descriptions
	10.8.1.1 Assess Waveforms (W_Assess)
	Figure 10-6 W_Assess

	10.8.1.2 W_Assess Subprocesses
	Figure 10-7 Assess Waveform Sub-Processes �

	10.8.1.3 Calculate the WF Functional Fit (W_FunctionalFt)
	Figure 10-8 W_FunctionalFt

	10.8.1.4 W_FunctionalFt Subprocesses
	Figure 10-9 W_FunctionalFt Subprocesses �

	10.8.2 Structure Charts
	Figure 10-10 WFMgr Structure Chart
	Figure 10-11 W_Assess Structure Chart
	Figure 10-12 W_FunctionalFt Structure Chart

	10.9 Elev_Subsystem
	Figure 10-13 Level 1B and 2 Elevation DFD
	10.9.1 L1B DFDs and their Descriptions
	10.9.1.1 Interpolate POD (C_IntrpPOD)
	Figure 10-14 Level 1B Elevation Computation DFD

	10.9.1.2 Tide Correction Routines (E_CalcLoadTD, E_CalcOceanTD, E_CalcEarthTD)
	Figure 10-15 Tide Corrections Routines DFD
	10.9.1.2.1 Compute Load Tide Correction (E_calcLoadTd)
	10.9.1.2.2 Compute Ocean Tide Correction (E_calcOceanTd)
	10.9.1.2.3 Compute Earth Tide Correction (E_calcEarthTd)

	10.9.1.3 Interpolate Geoids (C_GetGeoid)
	10.9.1.4 Calculate Troposphere Corrections (E_CalcTrop)
	10.9.1.5 Calculate Std surface Elevation and spot loc (C_ CalcSploc)
	10.9.1.6 Interpolate DEM (E_CalcDEM)
	10.9.1.7 Calculate Quality Flag (E_AtmQF)
	10.9.1.8 Calculate Slope & Roughness (E_CalcSlope)
	10.9.1.9 Create L1B Quality Statistics (update_GLA06QA)

	10.9.2 Create L1B Quality Statistics
	10.9.3 L2 DFDs and their Descriptions
	Figure 10-16 Calculate Level2 Elevations DFD
	10.9.3.1 Check Region (C_GetRegions)
	10.9.3.2 Determine Region Spec Elevation and Spot Location (C_CalcSploc)
	10.9.3.3 Calc Reg Params (E_OceanParm, E_LandParm)
	10.9.3.4 Interpolate DEM (E_CalcDEM)
	10.9.3.5 Create L2 Elevations QA (update_GLA12QA, update_GLA13QA, update_GLA14QA, update_GLA15QA)
	10.9.3.6 Create Elevation QA Statistics (wrapUpQAP06, wrapUpQAP12_15)

	10.9.4 Structure Charts
	Figure 10-17 Elevation Manager�
	Figure 10-18 Calculate Level 2 Elevations Structure Chart
	Figure 10-19 Tide Correction Routines Structure Chart
	Figure 10-20 GetGeoid Structure Chart
	Figure 10-21 Calculate Trop Corrections Structure Chart

	GLAS_Atm
	11.1 Overview
	11.2 Function
	11.3 Design Approach
	11.4 Input and Output Files
	Table 11-1 GLAS_Atm Inputs�
	Table 11-2 GLAS_Atm Outputs �

	11.5 Functions
	Figure 11-1 GLAS_Atm Structure Chart
	11.5.1 PGE Core Routines
	11.5.2 Atm Manager (Atm_Mgr)
	Figure 11-2 Atm_Mgr Structure Chart
	Figure 11-3 ATM Manager - Part 1
	Figure 11-4 ATM Manager - Part 2

	11.6 Atm_Subsystem
	Figure 11-5 Atmosphere Subsystem Processes
	11.6.1 DFDs and their Descriptions
	11.6.1.1 ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM Subprocesses
	Figure 11-6 ATM L1B Calculate Calibration Coefficients, Profile Locations, and DEM Subprocesses
	11.6.1.1.1 ATM L1B Calculate Calibration Coefficients (A_cal_cofs)
	11.6.1.1.2 ATM L1B Interpolate POD (C_IntrpPOD)
	11.6.1.1.3 ATM L1B Calculate Profile Locations (C_CalcSpLoc)
	11.6.1.1.4 ATM L1B Get Geoid (C_GetGeoid)
	11.6.1.1.5 ATM L1B Calculate DEM (E_CalcDEM)

	11.6.1.2 ATM L1B Backscatter Subprocesses
	Figure 11-7 ATM L1B Backscatter Subprocesses
	11.6.1.2.1 ATM L1B Interpolate Met Data (A_interp_met)
	11.6.1.2.2 ATM L1B Calculate Molecular Backscatter Cross Sections (A_mbscs)
	11.6.1.2.3 ATM L1B Vertically Align Profiles (A_rebin_lid)
	11.6.1.2.4 ATM L1B Calculate Backscatter Cross Section Profiles (A_ bscs)

	11.6.1.3 ATM L1B QA Statistics and WriteATM Subprocesses
	Figure 11-8 ATM L1B QA Statistics and WriteATM Subprocesses
	11.6.1.3.1 ATM L1B Create QA Statistics (A_qa_G7)
	11.6.1.3.2 ATM L1B Write Atmosphere (WriteAtm)

	11.6.1.4 ATM L1B L2 Buffer 20 Seconds Subprocess
	Figure 11-9 ATM L1B QA Statistics and WriteATM Subprocesses
	11.6.1.4.1 ATM L2 Buffer 20 seconds (A_buff_data)

	11.6.1.5 ATM L2 Calculate Layer Heights Subprocesses
	Figure 11-10 ATM L2: Cloud / Aerosol Layer Heights Subprocesses
	11.6.1.5.1 ATM L2 Calculate Cloud Layers (A_cld_lays)
	11.6.1.5.2 ATM L2 Calculate PBL Layer (A_pbl_lay)
	11.6.1.5.3 ATM L2 Calculate Elevated Aerosol Layers (A_aer_lays)

	11.6.1.6 ATM L2 Calculate Optical Properties
	Figure 11-11 Atmosphere Subsystem: Optical Properties Subprocesses
	11.6.1.6.1 ATM L2 Calculate Aerosol Optical Properties (A_aer_opt_prop)

	11.6.1.7 ATM L2 QA Statistics and WriteATM Subprocesses
	Figure 11-12 ATM L2 QA Statistics and WriteATM Subprocesses
	11.6.1.7.1 ATM L2 Create QA Statistics (A_qa_G7)
	11.6.1.7.2 ATM L1B Write Atmosphere (WriteAtm)

	11.6.2 Structure Charts
	Figure 11-13 ATM Calibration Coefficient / Profile Location / DEM Modules
	Figure 11-14 ATM Backscatter Modules
	Figure 11-15 ATM L1B QA Statistics / Write ATM Modules
	Figure 11-16 ATM 20 sec Buffering Module
	Figure 11-17 ATM Cloud / Aerosol Layer Heights Modules
	Figure 11-18 ATM Optical Properties Module
	Figure 11-19 L2 QA Statistics / Write ATM Modules

	GLAS_Reader
	12.1 Function
	12.2 Design Approach
	12.3 Input and Output Files
	Table 12-1 GLAS_Reader Inputs�

	12.4 GLAS_Reader
	12.4.1 PGE Core Routines

	met_util
	13.1 Overview
	13.2 Function
	13.3 Design Approach
	13.4 Input and Output Files
	Table 13-1 met_util Inputs
	Table 13-2 met_util Outputs

	13.5 Functions
	13.6 Functional Overview
	Figure 13-1 Process Flow Diagram: Overall Process
	Figure 13-2 Process Flow Diagram: Shell Script

	reforbit_util
	14.1 Overview
	14.2 Function
	14.3 Design Approach
	14.4 Input and Output Files
	Table 14-1 createGran_util Inputs
	Table 14-2 createGran_util Outputs

	14.5 Functions
	14.6 Functional Overview
	Figure 14-1 Process Flow Diagram

	createGran_util
	15.1 Overview
	15.2 Function
	15.3 Design Approach
	15.3.1 Definitions
	15.3.2 Assumptions

	15.4 Input and Output Files
	Table 15-1 createGran_util Inputs
	Table 15-2 createGran_util Outputs�

	15.5 Functions
	15.6 Functional Overview
	Figure 15-1 Process Flow Diagram

	atm_anc
	16.1 Overview
	16.2 Function
	16.3 Design Approach
	16.4 Input and Output Files
	Table 16-1 atm_anc Inputs�
	Table 16-2 atm_anc Outputs

	16.5 Functions
	Figure 16-1 Process Flow Diagram

	16.6 Functional Overview of Calibration Modules
	16.6.1 Segment Averaging Module (SAM)
	16.6.2 CALibration Module (CALM)

	GLAS_Meta
	17.1 Function
	17.2 Design Approach
	17.3 Input and Output Files
	Table 17-1 GLAS_Meta Inputs�
	Table 17-2 GLAS_Meta Outputs �

	17.4 GLAS_Meta
	17.4.1 PGE Core Routines
	17.4.2 Metadata Processing

	GLAS_APID
	18.1 Function
	18.2 Design Approach
	18.3 Input and Output Files
	Table 18-1 GLAS_APID Inputs�
	Table 18-2 GLAS_APID Outputs �

	18.4 GLAS_APID
	18.4.1 PGE Core Routines

	Processing Scenarios
	Table A-1 Reprocessing Scenarios�

	Makefiles and Libraries
	B.1 Compilation
	B.1.1 To compile the whole distribution
	B.1.2 To compile only the libraries
	B.1.3 To recompile a library in debug mode
	B.1.4 To recompile a library in optimized mode
	B.1.5 To compile a specific executable
	B.1.6 To compile a specific executable in debug mode
	B.1.7 To compile a specific executable in optimized mode

	B.2 Using Libraries
	B.2.1 Development
	B.2.2 Runtime

	B.3 Some Development Hints
	B.4 Makefile Details
	B.5 Types of Makefiles
	B.5.1 The Main Makefile
	B.5.2 The src Makefile
	B.5.3 Library Makefiles
	B.5.4 Subsystem Makefiles
	B.5.5 Exec makefiles

	B.6 A Sample Heavily-Commented Makefile

	Abbreviations & Acronyms
	Glossary

